Richard Fournier* (fournier@dms.umontreal.ca), CRM and DMS, CP 6128, Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada. An interpolation formula for divided differences of algebraic polynomials and some inequalities following from it.

Let \(D \) denote the unit disc of the complex plane and \(P_n \) the class of polynomials of degree at most \(n \) with complex coefficients. It has been obtained that

\[
\max_{z \in \partial D} \left| \frac{p_k(z) - p_k(\bar{z})}{z - \bar{z}} \right| \leq n^{1+k} \max_{0 \leq j \leq n} \left| \frac{p(e^{ij\pi/n}) + p(e^{-ij\pi/n})}{2} \right|,
\]

where \(p_0 := p \) belongs to \(P_n \) and for \(k \geq 0 \), \(p_{k+1}(z) := z p_k'(z) \). We obtain a new proof of a well-known inequality of Duffin and Schaeffer and of some other classical inequalities as the inequality of Schur. (Received July 23, 2018)