Let K be an origin-symmetric convex body in \mathbb{R}^n, $n \geq 3$, satisfying the following condition: there exists a constant c such that for all directions ξ in \mathbb{R}^n,

$$h_K(\xi) \text{vol}_{n-1}(K \cap \xi^\perp) = c.$$

(here ξ^\perp stands for a subspace of \mathbb{R}^n of co-dimension 1 orthogonal to a given direction ξ, and $h_K(\xi)$ is the support function of K in this direction). The fifth Busemann-Petty problem asks if K must be an ellipsoid. We give an affirmative answer to this question for origin-symmetric convex bodies that are sufficiently close to an Euclidean ball in the Banach-Mazur distance. This is a joint work with Maria Angeles Alfonseca, Fedor Nazarov and Vlad Yaskin. (Received July 26, 2018)