We consider a family of discrete growth models on \mathbb{Z}^2 with nearest neighbors giving by the Hamming distance. Vertices have one of two initial states, occupied or unoccupied. At subsequent steps the state of a vertex is updated to occupied if certain conditions are met. Once a vertex becomes occupied it remains occupied. This can be viewed as a generalization of bootstrap percolation on the Hamming graph. We give scaling limits for the probability that a finite rectangle becomes fully occupied. We also consider extremal problems. This is based on joint work with Janko Graver, J.E. Paguyo, and David Sivakoff. (Received July 31, 2018)