Suppose $A \subset B + B = \{b + b', b, b' \in B\}$ for finite sets of reals $A, B$. Trivially, $|B| \geq |A|^{1/2}$. Improving on this bound for sets $A$ with some additional structure is in general a hard problem. The first available result in this spirit is a classical theorem due to Erdős and Newman, who prove that when $A$ is the set of the first $m$ perfect squares and $B$ is a set of integers, we have that $|B| \geq m^{2/3 - \epsilon}$ for any $\epsilon > 0$. For sets $A$ with small product set $AA$, Shkredov and Zhelezov managed to prove that a condition of the form $|AA| \ll |A|^{1+\epsilon}$ for some $\epsilon > 0$ implies $|B| \geq |A|^{1/2+1/442-\epsilon'}$ even if $A$ and $B$ are sets of real numbers (which are not necessarily integers). Here, $AA = \{aa', a, a' \in A\}$. In this talk, we will discuss an improvement of this result in the case when $A$ and $B$ are a set of integers, and furthermore, answering a question of Shkredov and Zhelezov, show that if $|AA| \ll |A|^{1+\epsilon}$ and $A \subset B + B$, then $|B + B| \gg |A|^{10/9-\epsilon''}$ for every $\epsilon'' > 0$. If time permits, some two dimensional variants of this result will be considered. (Received August 22, 2018)