Let $R = Q/I$, where Q is a regular local ring and I is generated by a regular sequence of c elements in the square or the maximal ideal. It is known that for each finitely generated R-module M there are integer-valued polynomials p^+_M and p^-_M with $\deg(p^+_M) < \deg(p^-_M) < c$, such that for $i \gg 0$ the Betti numbers of M are given by $\beta^R_{2i}(M) = p^+_M(2i)$ and $\beta^R_{2i+1}(M) = p^-_M(2i + 1)$. It will be shown that the degree of $p^+_M - p^-_M$ is less than $c - q - 1$, where q is the height of the ideal of the associated graded ring of Q generated by the quadratic initial forms of the elements of I. (Received August 26, 2018)