The Sergeev duality states that the action of the Type Q Lie superalgebra $q(n)$ and the Sergeev algebra fully centralize each other on the tensor space. Hill-Kujawa-Sussan (2011) generalized this work to the one boundary setting. We further study the two boundary generalization and define the degenerate two boundary affine Hecke-Clifford algebra B_d using generators and relations. It admits a $q(n)$-linear action on $M \otimes N \otimes V^\otimes d$ for the natural representation V and arbitrary $q(n)$-modules M and N. When M and N are polynomial modules parametrized by a staircase and a single row partition, respectively, the action of B_d factors through a quotient algebra H_d. Using combinatorial tools such as the Bratteli diagram and shifted Young tableaux, we construct simple modules for H_d. These modules occur as irreducible H_d-summands of $M \otimes N \otimes V^\otimes d$. (Received July 16, 2018)