Spectral clustering has emerged as a very effective clustering approach, due to its capability of separating nonconvex, non-intersecting manifolds, however, it is computationally very expensive. As a result, there has been considerable effort in the machine learning community to develop fast, approximate spectral clustering algorithms that are scalable to large data, most of which use a small set of landmark points selected from the given data. In this talk we present two new scalable spectral clustering algorithms that are also landmark based but derived through novel document-term and bipartite graph models. We demonstrate the superior performance of our proposed algorithms by comparing them with the state-of-the-art methods on some benchmark data sets. Finally, we provide a unified view of all the old and new landmark-based spectral clustering methods. (Received May 30, 2018)