Paul Baginski* (pbaginski@fairfield.edu), Department of Mathematics, Fairfield University, 1073 North Benson Rd., Fairfield, CT 06824. Nonunique factorization in the ring of integer-valued polynomials.

The ring of integer-valued polynomials $\text{Int}(\mathbb{Z})$ is the set of polynomials with rational coefficients which produce integer values for integer inputs. Specifically,

$$\text{Int}(\mathbb{Z}) = \{ f(x) \in \mathbb{Q}[x] | \forall n \in \mathbb{Z} f(n) \in \mathbb{Z} \}.$$

$\text{Int}(\mathbb{Z})$ constitutes an interesting example in algebra from many perspectives; for example, it is a natural example of a non-Noetherian ring. It is also a ring with nonunique factorization. Every element has only finitely many factorizations, yet the number of irreducibles involved grows without bound. Frisch recently demonstrated that in $\text{Int}(\mathbb{Z})$, you can find an element $f(x)$ that has any factorization lengths you desire and you can even prescribe the number of factorizations of each length. The polynomials constructed in this way have high degree. We give a graded analysis, determining all the possible elasticities and catenary degrees for a polynomial as a function of the degree of the polynomial.

Joint work with: Greg Knapp, Jad Salem, and Gabrielle Scullard. (Received August 21, 2018)