For an integral domain D with field of fractions K, the ring over integer-valued polynomials on D is $\text{Int}(D) = \{f \in K[x] \mid f(D) \subseteq D\}$. In this talk, we will discuss how to construct generalizations of $\text{Int}(D)$ by using skew polynomials. Given an automorphism σ of K, the skew polynomial ring $K[x; \sigma]$ consists of polynomials with coefficients from K, and with multiplication given by $xa = \sigma(a)x$ for all $a \in K$. We define

$$\text{Int}(D; \sigma) = \{f \in K[x; \sigma] \mid f(D) \subseteq D\},$$

which is the set of integer-valued skew polynomials on D. When σ is not the identity, $K[x; \sigma]$ is noncommutative and evaluation behaves differently than it does for ordinary polynomials. Despite these difficulties, we will show that $\text{Int}(D; \sigma)$ has a ring structure in many cases. While multiplication in these rings is manifestly noncommutative, we can construct interesting commutative rings of polynomials by considering only those polynomials in $\text{Int}(D; \sigma)$ whose coefficients are fixed by σ. Properties of the above rings that may be discussed in this talk include elements, prime and maximal ideals, chain conditions, and behavior under localization. (Received July 30, 2018)