We define the spectral and the nuclear norm of a homogeneous polynomial \(f \) of degree \(d \) in \(n \) variables, over real or complex numbers, as the maximum of the absolute value of \(f \) on the unit sphere, and the minimum “energy” of the decomposition of \(f \) as a sum of powers of linear forms. We show that for a fixed \(n \) the spectral and nuclear norms can be approximated polynomially in \(d \). These results imply that the entanglement of symmetric tensors and the separability of symmetric density tensors can be compute polynomially in \(d \) for a fixed \(n \). The proof uses recent results of Friedland-Lim, Friedland-Wang and Derksen-Friedland-Lim-Wang. (Received August 14, 2018)