Alexander Heaton* (aheaton@uwm.edu). Graded multiplicity in harmonic polynomials from the Vinberg setting.

We describe the graded multiplicity of irreducible representations by counting integral points on faces of a polyhedron. This description applies to a family of examples from the following context (first considered by Vinberg): Let G be a connected reductive algebraic group over the complex numbers. A subgroup, K, of fixed points of a finite-order automorphism acts on the Lie algebra of G. Each eigenspace of the automorphism is a representation of K. The harmonic polynomials on an eigenspace are graded by homogeneous degree, giving us a graded representation of K. Given any irreducible representation of K, we will see how its multiplicity in the harmonic polynomials is distributed among the various graded components. The results are described geometrically by counting integral points on faces of a polyhedron. The multiplicity in each graded component is given by intersecting these faces with an expanding sequence of shells. (Received July 21, 2018)