Loredana Lanzani* (llanzani@syr.edu), Department of Mathematics, Syracuse University, Syracuse, NY 13244, and Elias M Stein, Mathematics Department, Princeton University, Princeton, NJ 08544. On regularity and irregularity of the Cauchy-Szego projection in several complex variables. Preliminary report.

It is known that for domains $D \subset \mathbb{C}^n$ that are of class C^2 and are strongly pseudo-convex, the Cauchy-Szegő projection is bounded in $L^p(bD,d\Sigma)$ for $1 < p < \infty$. (Here $d\Sigma$ is induced Lebesgue measure.) We show, using appropriate worm domains, that this fails for any $p \neq 2$, when we assume that the domain in question is only weakly pseudo-convex. Our starting point are the ideas of Kiselman-Barrett introduced more than 30 years ago in the analysis of the Bergman projection. However the study of the Cauchy-Szegő projection raises a number of new issues and obstacles that need to be overcome. Time permitting, we will also compare these results to the analogous problem for the Cauchy-Leray integral, where however the relevant counter-example is of much simpler nature. This is joint work with E. M. Stein (Princeton U.) (Received August 07, 2018)