We consider planar fronts in a class of reaction-diffusion systems with the following property: the linearization of the system about the front has no unstable discrete eigenvalues, but its essential spectrum touches the imaginary axis. For perturbations that belong to the intersection of the exponentially weighted space with the original space without a weight, we use a bootstrapping argument to show that initially small perturbations to the front remain bounded in the original norm and decay algebraically in time in the exponentially weighted norm. (Received August 06, 2018)