1143-53-11Adela Mihai*, Bd. Lacul Tei 122-124, 020396 Bucharest, Romania. Recent Results in the
Geometry of Einstein Spaces. Preliminary report.

Given a compact C^{∞} -differentiable manifold M, dim M = n, the following question arises (René Thom, Strasbourg Math. Library, 1958):

Are there any best (or nicest, or distinguished) Riemannian structures on M?

A good candidate for such a privileged metric on a given manifold is an *Einstein* metric, if one considers the *best metrics* those of constant sectional curvature. More precisely, if the dimension of the manifold is greater than 2, a good generalization of the concept of constant sectional curvature might be the notion of *constant Ricci curvature*.

A Riemannian manifold (M, g) of dimension $n \ge 3$ is called an *Einstein space* if $Ric = \lambda \cdot id$, where trivially $\lambda = \kappa$, with k the (normalized) scalar curvature; in this case one easily proves that $\lambda = \kappa = constant$.

Singer and Thorpe (1969) discovered a symmetry of sectional curvatures which characterizes 4-dimensional Einstein spaces. Later, this result was generalized by B.Y. Chen e.a. [Proc. AMS, 2000] to Einstein spaces of even dimensions $n = 2k \ge 4$. The present author and U. Simon [Colloq. Math., 2018] established curvature symmetries for Einstein spaces of arbitrary dimension $n \ge 4$. (Received May 19, 2018)