Quantum trajectories are certain Markov processes on a complex projective space. They describe evolution of a quantum system subject to a repeated indirect measurement. For a given set of matrices \mathcal{A} and a unit vector x, a probability of a sequence of matrices V_1, V_2, \ldots, V_n, $V_j \in \mathcal{A}$ is proportional to $\|V_n \cdots V_1 x\|^2$. The Markov process is given by $x_n \sim V_n \cdots V_1 x$. In this talk I will first review basic properties of this process and then discuss how the measure and the process change if the underlaying set of matrices \mathcal{A} changes. (Received August 06, 2018)