We prove that the density of states measure (DOSm) for discrete random Schrödinger operators on \mathbb{Z}^d is weak-star Hölder-continuous in the probability measure. One immediate application provides quantitative continuity estimates for the disorder dependence of the DOSm and the integrated density of states (IDS) in the weak disorder regime. These results hold for a general compactly supported single-site probability measure, without any further assumptions. The few previously available results for the disorder dependence of the IDS in the weak disorder regime valid for dimensions $d \geq 2$ had to assume absolute continuity of the single-site measure and thus excluded the Bernoulli-Anderson model.

As a further application, we obtain quantitative continuity of the Lyapunov exponent in the probability measure and weak-star topology for discrete random Schrödinger operators. (Received August 14, 2018)