Let Q be a regular local ring and I an ideal generated by a regular sequence of c elements in the square of the maximal ideal. It is known that over the complete intersection $R = Q/I$ that any finitely generated module M has Betti numbers eventually given by quasi-polynomial of degree less than c. That is, there are integer-valued polynomial functions p^+_M and p^-_M with the same leading term such that $\beta^R_{2i}(M) = p^+_M(2i)$ and $\beta^R_{2i+1}(M) = p^-_M(2i + 1)$ for i sufficiently large. We will show that if q is the height of the ideal generated by the quadratic initial forms of I in the associated graded ring of Q, then the degree of $p^+_M - p^-_M$ is less than $c - q - 1$. (Received August 31, 2018)