A graph is hamiltonian if it contains a cycle that spans the vertex set. A graph is pancyclic if it contains cycles of each length k, $3 \leq k \leq |V(G)|$. In the early 1970’s Bondy noted a tie between conditions that imply G is hamiltonian and those that imply G is pancyclic. He stated his now famed meta-conjecture that almost all conditions that imply G is hamiltonian will also imply that G is pancyclic, except possibly for a few determined families of graphs. Recall that a chord is an edge between two vertices of the cycle that is not an edge of the cycle. In this talk we will extend the meta-conjecture to graphs that are chorded pancyclic, that is, graphs that are pancyclic, but have the property that for each k, $4 \leq k \leq |V(G)|$, there is a chorded cycle of length k. We will also supply evidence supporting the new meta-conjecture. (Received January 11, 2019)