Let $r \geq 3$. Given an r-graph H, the minimum codegree $\delta_{r-1}(H)$ is the largest integer t such that every $(r-1)$-subset of $V(H)$ is contained in at least t edges of H. Given an r-graph F, the codegree Turán density $\gamma(F)$ is the smallest $\gamma > 0$ such that every r-graph on n vertices with $\delta_{r-1}(H) \geq (\gamma + o(1))n$ contains F as a subhypergraph. Using results on the independence number of hypergraphs, we show that there are constants $c_1, c_2 > 0$ depending only on r such that

$$1 - c_2 \frac{\ln t}{t^{r-1} \ln t} \leq \gamma(K^r_t) \leq 1 - c_1 \frac{\ln t}{t^{r-1}},$$

where K^r_t is the complete r-graph on t vertices. This gives the best general bounds for $\gamma(K^r_t)$. (Received January 22, 2019)