In their study of truncated theta series, Andrews-Merca and Guo-Zeng made the following conjecture on Jacobi’s triple product identity:

\[
\frac{(-1)^k}{(q^S, q^{S-R}, q^R, q^R)_\infty} \sum_{j=0}^{k} (-1)^j q^{R(j^2+1)-Sj}(1 - q^{(2j+1)S})
\]

has nonnegative coefficients for any integer \(k \geq 0 \). This conjecture was settled by Mao and Yee independently in 2015, and was recently reproved by Wang and Yee. However, what numerical computation suggests is that even if the infinite product in the denominator is replaced by a finite product, still the coefficients are nonnegative. In this talk, I will explain why this observation is true for some special values of \(R \) and \(S \). This talk is based on joint work with Song Heng Chan. (Received January 27, 2019)