A zero-nonzero pattern A is a matrix with entries from the set $\{0, \ast\}$. A square zero-nonzero pattern A is spectrally arbitrary over R, a commutative ring with unity, if all the monic polynomials from $R[x]$ are a characteristic polynomial for some realization of A, i.e. if all possible spectrums can be realized. In this talk, I will discuss how the algebraic structure of rings affects how we determine if a pattern is spectrally arbitrary. I will also detail some of the results we found when considering whether a pattern that is spectrally arbitrary over a ring R will be spectrally arbitrary over a different ring S. These results establish that a pattern that is spectrally arbitrary over \mathbb{Z} will be spectrally arbitrary over \mathbb{Q} and relaxed spectrally arbitrary over $\mathbb{Z}/(m)$ for all positive integers m. Similarly, these results will establish the relationship of spectrally arbitrary patterns over the p-adic integers with the p-adic numbers and finite fields of order p. (Received January 27, 2019)