Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, (X, \mathcal{B}_X) be a Borel σ-algebra induced by a σ-compact Hausdorff space, and π be a marked Poisson random measure (r.m.) on $F \otimes \mathcal{B}_X$ directed by a Borel measure μ. Then, $\mathbb{E} e^{-i\theta \pi} = e^{\mu[F(\theta)-1]}$ (F is the Fourier-Stieltjes transform of the marks) is the Fourier-type functional of r.m. π. Suppose now that π is perturbed by a Σ-measurable semi-Markov process η that makes π change its parameters subject to the evolution of η. We denote such modulation by π_η. Previously, we proved that such a new construction is also a r.m. We obtain an associated Fourier-type functional $\mathbb{E} e^{-i\theta \pi_\eta}$ reminiscent of that for conventional Poisson r.m. Among other related ramifications of this analysis, is a geometric Poisson r.m. modulated by η. This find applications to the stock market. Of further interest, is the exponential intensity of the process representing the mean exponential return rate of a stock modulated by η. We find a closed-form expression for this functional. (Received January 29, 2019)