A place cell is a neuron corresponding to a subset of Euclidean space known as a place field, that will fire if and only if the individual to which the neuron belongs is within that place field. The firing patterns of a collection of n place fields can be represented by a neural code C on n neurons, which is a subset of 2^n. Determining whether C is convex, meaning that there is an arrangement of convex place fields for which C is the code, remains an open problem.

A sufficient condition for convexity is being max intersection complete: any intersection of maximal codewords is also a codeword. Currently, the only way to determine this property is to evaluate all such intersections. We present a new method to determine max intersection completeness by introducing a simplicial complex for a code C called the order complex $\Delta_0(C)$ of C. We show how to construct $\Delta_0(C)$ using Stanley-Reisner theory, describe how $\Delta_0(C)$ encodes information about C, and give an algorithm to check whether C is max intersection complete using the order complex of a closely related code. (Received January 25, 2019)