For a rational polynomial f and rational numbers c, u, we put $f_c(x) := f(x) + c$, and consider the Zsigmondy set $Z(f_c, u)$ associated to the sequence $\{f_c^n(u) - u\}_{n \geq 1}$, where f_c^n is the n-st iteration of f_c. In this paper, we prove that if u is a rational critical point of f, then there exists an $M_f > 0$ such that $M_f \geq \max_{c \in \mathbb{Q}} \{Z(f_c, u)\}$. (Received August 16, 2019)