The idea is that in algebraic geometry reductive groups should arise from graphs using distributions on curves. First, in the abelian case, i.e., the multiplicative group, the abelianization of a local of global smooth curve $X$ (meaning the freely generated commutative group object in algebraic geometry) turns out to be the multiplicative distributions on $X$. [The semiabelianization (the freely generated commutative monoid) is the Hilbert scheme of points of the curve.] In the case of a general reductive $G$, the $G$-cohomology of a curve should be given by some “projective distributions” on the cohomology of a Cartan. These are the ones that satisfy a property of “locality” from QFT or “factorization” (Beilinson-Drinfeld). (Received August 20, 2019)