Scott showed that for every countable structure A, there is a sentence of $L_{\omega_1\omega}$, called the Scott sentence of A, that describes A up to isomorphism among countable structures. In this talk, we discuss a few general results about a structure's Scott complexity: the least complexity (Σ_α, Π_α, or $d\Sigma_\alpha$) of a Scott sentence for A. In particular, we show that a structure is finitely generated after α-many jumps on some cone iff it is almost rigid structure and has Scott complexity $\Sigma_{\alpha+2}$, $d\Sigma_{\alpha+1}$ or for limit α, $\Sigma_{\alpha+1}$. This observation allows us to generalize the notion of a finitely generated structure. (Received February 04, 2019)