Let \mathfrak{g} be an affine Lie algebra with index set $I = \{0, 1, 2, \cdots, n\}$ and \mathfrak{g}^L be its Langlands dual. It is conjectured that for each Dynkin node $i \in I \setminus \{0\}$ the affine Lie algebra \mathfrak{g} has a positive geometric crystal whose ultra-discretization is isomorphic to the limit of certain coherent family of perfect crystals for \mathfrak{g}^L. In this paper we construct a positive geometric crystal $\mathcal{V}(D_5^{(1)})$ in the level zero fundamental spin $D_5^{(1)}$-module $W(\varpi_5)$. Then we define explicit 0-action on the level ℓ known $D_5^{(1)}$-perfect crystal $B_5^{5,\ell}$ and show that $\{B_5^{5,\ell}\}_{\ell \geq 1}$ is a coherent family of perfect crystals with limit $B_5^{5,\infty}$. Finally we show that the ultra-discretization of $\mathcal{V}(D_5^{(1)})$ is isomorphic to $B_5^{5,\infty}$ as crystals which proves the conjecture in this case. This is joint work with M. Igarashi and S. Pongprasert. (Received February 05, 2019)