We present some existence results about the following polyharmonic equation
\[(-\Delta)^n u = K(x)e^{2nu} \quad \text{in} \quad \mathbb{R}^{2n}, \quad (1) \]
where \(n \geq 2 \) and \(K \neq 0 \). This equation naturally arises in conformal geometry. Let \(K \) be a given function in \(\mathbb{R}^{2n} \), one would like to find a conformal metric \(g_u = e^{2u}|dx|^2 \) such that \(K(x) \) is the \(Q \)-curvature of the new metric \(g_u \), then the problem is reduced to find solutions of (1). We are interested in solutions to (1) with logarithmic growth at infinity with non constant curvature \(K \), i.e. solutions verifying satisfying \(u(x) = O(\ln |x|) \) as \(|x| \to \infty \). Mainly we will discuss the nonpositive \(Q \)-curvature case. This is a joint work with X.Huang and D.Ye. (Received February 01, 2019)