We study two classical problems in convex geometry in \mathbb{R}^n associated to \mathcal{A}-harmonic PDEs, quasi-linear elliptic PDEs whose structure is modeled on the p-Laplace equation. Let p be fixed with $2 \leq n \leq p < \infty$. For a convex compact set $E \subset \mathbb{R}^n$ we define and then prove the existence and uniqueness of a \mathcal{A}-harmonic Green's function G for the complement of E with pole at infinity. Then we define a quantity $C_{\mathcal{A}}(E)$ which can be seen as the behavior of G near infinity, using this quantity in the place of capacity we prove a Brunn-Minkowski inequality for $C_{\mathcal{A}}$.

We also consider the Minkowski problem for a measure associated with G, we show that the necessary and sufficient conditions for existence are the same as in the classical Minkowski problem. (Received January 26, 2019)