Elliot J. Bertrand* (bertrande@sacredheart.edu), Sacred Heart University, Fairfield, CT 06825, and Mustafa Kulenovic (mkulenovic@uri.edu). Global Behavior of a Class of Order-k Discrete Dynamical Systems.

The first-order Beverton–Holt equation has been widely studied and was historically used to model the population dynamics of fisheries. In this presentation we will consider a class of order-k difference equations that generalize this classical model. Consider

\[x_{n+1} = \frac{af(x_n, x_{n-1}, \ldots, x_{n+k-1})}{1 + f(x_n, x_{n-1}, \ldots, x_{n+k-1})}, \quad n = 0, 1, \ldots, \]

where \(k \) is a fixed positive integer, \(f \) is a function nondecreasing in all arguments, \(a \) is a positive constant, and \(x_0, x_{-1}, \ldots, x_{1-k} \) are nonnegative numbers in the domain of \(f \). We will discuss several examples of such equations and present some general theory. When \(k = 2 \), we will review some global dynamic scenarios in the event \(f \) is a certain type of linear or quadratic polynomial, and we explore the existence problem of period-two solutions. We will further present results for the global dynamics of the class of difference equations for which \(f \) satisfies specific algebraic or concavity conditions. (Received February 04, 2019)