I will start with a brief introduction of reduced (spherical) root systems and their finite reflection groups. Afterwards, I’ll give the definition of a radial Dunkl process and provide necessary and sufficient conditions for hitting the boundary of the underlying Weyl chamber. Finally, I’ll provide formulas for the tail distribution of the first hitting time of the boundary for the infinite series of root systems. A special interest will be given for dihedral groups for which we will provide explicit expressions of the density and its Laplace transform through hypergeometric functions. (Received January 19, 2019)