It is well-known that fast matrix-vector multiplication algorithms for many well-studied structured matrices A (e.g. those with low-displacement rank) are equivalent to small arithmetic circuit to compute $A \cdot x$. We note that the Baur-Strassen theorem a small arithmetic circuit to compute Ax gives a small arithmetic circuit to compute the gradient of $A \cdot x$ wrt A. We implement this observation to achieve the following two empirical results:

1. Recover a number of well-known fast algorithms to compute Ax given A. E.g. we automatically learn the FFT from the Discrete Fourier matrix for dimensions up to $N = 1024$ (by learning over a restricted class of arithmetic circuits).

2. We replace a “unconstrained” layer in neural networks with structured matrix layer and simultaneously obtain parameter savings and accuracy improvements on some classification tasks.

Based on joint works with Tri Dao (Stanford), Matt Eichhorn (UB), Albert Gu (Stanford), Chris Ré (Stanford) and Anna Thomas (Stanford). (Received January 28, 2019)