In this talk we introduce an analogue of the chromatic polynomial in the context of DP-coloring. $P(G, m)$, the chromatic polynomial of a graph G, is equal to the number of proper m-colorings of G. In the early 1990’s, a list analogue of the chromatic polynomial was introduced. The list color function of graph G, $P_l(G, m)$, counts the minimum guaranteed number of colorings over all possible m-list-assignments. Many results in the literature comparing the list color function of a graph to its chromatic polynomial have appeared. Importantly, for any graph G, it is known that $P(G, m) = P_l(G, m)$ for sufficiently large m. DP-coloring (also called correspondence coloring) is a generalization of list coloring introduced by Dvořák and Postle in 2015. In this talk, we introduce the DP color function, $P_{DP}(G, m)$, a DP-coloring analogue of the chromatic polynomial of G. We show that while the DP color function behaves similar to the list color function for some graphs, there are some surprising differences, one of which is that $P_{DP}(G, m) < P(G, m)$ for sufficiently large m whenever G is graph with girth that is even. (Received August 28, 2019)