In 1963, Corrádi and Hajnal verified a conjecture of Erdős by showing that for all \(k \in \mathbb{Z}^+ \), if a graph \(G \) has at least \(3k \) vertices and \(\delta(G) \geq 2k \), then \(G \) will contain \(k \) disjoint cycles. This result, which is best possible, has served as motivation behind many recent results in finding sharp minimum degree conditions that guarantee the existence of a variety of structures. In particular, Qiao and Zhang in 2010, showed that if \(G \) has at least \(4k \) vertices and \(\delta(G) \geq \lfloor \frac{7k}{2} \rfloor \), then \(G \) contains \(k \) disjoint doubly chorded cycles. Then in 2015, Gould, Hirohata, and Horn proved that if \(G \) has at least \(6k \) vertices, then \(\delta(G) \geq 3k \) is sufficient to guarantee \(k \) disjoint doubly chorded cycles. In this talk, we extend the result of Gould et al. by showing that \(\delta(G) \geq 3k \) suffices for graphs on at least \(5k \) vertices (which is best possible for the given minimum degree), and we present an improvement of the Qiao and Zhang condition to \(\delta(G) \geq \lceil \frac{10k-1}{3} \rceil \), which is sharp. This is joint work with Maia Wichman. (Received August 29, 2019)