A matching in an Abelian group G is a bijection f from a subset A to a subset B in G such that $a + f(a) \notin A$, for all $a \in A$. This notion was introduced by Fan and Losonczy who used matchings in \mathbb{Z}^n as a tool for studying an old problem of Wakeford concerning elimination of monomials in a generic homogenous form under a linear change of variables. We show a sufficient condition for the existence of matchings in arbitrary groups and its linear analogue, which lead to some generalizations of the existing results in the theory of matchings in groups and central extensions of division rings. We introduce the notion of relative matchings between arrays of elements in groups and use this notion to study the behavior of matchable sets under group homomorphisms. Providing and improving of the fundamental theorem of algebra we study we classify matchable families of vector spaces in field extensions. (Received November 08, 2018)