In this talk, we provide a systematic control of a given biochemical circuit through the addition of absolutely robust modules, that is, additional chemical compounds that react with the existing circuit and confer so-called absolute concentration robustness (ACR) to the full network. Absolute robustness in particular guarantees a form of control in the concentration of a species of interest. The approach relies on a framework developed originally in Enciso 2016, where a network with absolute robustness is studied using an existing theory for chemical reaction networks. To show that one can control a species of interest by adding an absolutely robust module, we compare the controlled network with a simplified network through a process known as multiscaling model reduction. When the simplified network has certain structural conditions, the species of interest in the controlled network is approximately distributed as a Poisson centered at the absolutely robust concentration. To make this framework more applicable, we also provide the accuracy of this approximation using the analysis of multiscaling model reductions. (Received June 12, 2019)