We discuss some recent results and conjectures on the classification under Borel reduction of the orbit equivalence relations induced by Borel actions of abelian Polish and standard Borel groups. Gao and Jackson showed that Borel actions of countable abelian groups induce orbit equivalence relations which are hyperfinite, i.e., induced by a Borel \mathbb{Z}-action, or equivalently, Borel reducible to eventual agreement on sequences of naturals, and this has since been generalized to wider classes of countable groups than abelian. In the case of uncountable Polish groups, we conjecture that if an abelian orbit equivalence relation happens to be reducible to one with countable classes then it must reduce to the hyperfinite, and Ding and Gao showed this to be the case if the acting group is also non-archimedean. In this paper, we conclude that a Borel action of a standard Borel group which is isomorphic to a sum of a countable abelian group with a countable sum of real lines and circles induces a relation which is hypersmooth, i.e., reducible to eventual agreement on sequences of reals, and it follows from this result along with the structure theory for locally compact abelian groups that Borel actions of Polish LCA-groups induce orbit relations which reduce to hyperfinite. (Received July 01, 2019)