In 1987 Alavi, Malde, Schwenk and Erdős showed that the independent set sequence of a graph is unconstrained in terms of its pattern of rises and falls, in the following sense: for any \(m \in \mathbb{N} \) and any permutation \(\pi \) of \(\{1, \ldots, m\} \) there is a graph with largest independent set having size \(m \), and with

\[
i_{\pi(1)} \leq i_{\pi(2)} \leq \cdots \leq i_{\pi(m)},
\]

where \(i_k \) is the number of independent sets of size \(k \) in the graph. Their construction yielded a graph with around \(m^{2m} \) vertices, and they raised the following question:

Determine the smallest order large enough to realize every permutation of order \(m \) as the sorted indices of the vertex independent set sequence of some graph.

We answer this question exactly. Alavi et al. also observed that the matching sequence of a graph is, by contrast, quite constrained — at most \(2^{m-1} \) permutations of \(\{1, \ldots, m\} \) can be realized as the sorted indices of the matching sequence of some graph. They asked whether the upper bound of \(2^{m-1} \) was optimal; we show that it is not. Many open problems remain in this area.

This is joint work with Taylor Ball, Katie Hyry and Kyle Weingartner, all at Notre Dame. (Received May 23, 2019)