It is well known that any d-regular graph on n vertices with second largest absolute eigenvalue at most λ is a pseudo-random graph. Let $c(G)$ denote the number of components of a graph G. The toughness $t(G)$ of a connected graph G is defined as $t(G) = \min\left\{ \frac{|S|}{c(G - S)} \right\}$, where the minimum is taken over all proper subset $S \subset V(G)$ such that $c(G - S) > 1$. Graph toughness was introduced by Chvátal in 1973 and is closely related to many graph properties, including Hamiltonicity, pancyclicity, factors, and spanning trees, etc. In this talk, some old and new results related toughness in pseudo-random graphs will be presented. (Received July 13, 2019)