Given a simple graph G, the standard zero forcing process obtains a combinatorial upper bound for the maximum multiplicity of an eigenvalue of any symmetric matrix whose off-diagonal zero nonzero pattern agrees with the adjacency matrix of G. In this talk, a recently developed version of the zero forcing process, rigid linkage forcing, will be discussed. This process extracts additional combinatorial information about the maximum multiplicities of the eigenvalues of matrices in this family by considering “partial” zero forcing sets. These are forcing chains which cover some but not all the vertices of the graph, and their sizes can then be used to infer information about possible eigenvalue multiplicities. (Received July 12, 2019)