The differentiation theory of Lipschitz functions taking values in a Banach space with the Radon-Nikodým property (RNP), originally developed by Cheeger-Kleiner, has proven to be a powerful tool to prove non-biLipschitz embeddability of metric spaces into these Banach spaces. Important examples of metric spaces to which this theory applies include nonabelian Carnot groups and Laakso spaces. In search of a metric characterization of the RNP, Ostrovskii found another class of spaces that do not biLipschitz embed into RNP spaces, namely those containing thick families of geodesics. In this talk, we will give a brief overview of these results, and discuss a recent result of the speaker: any complete metric space containing a thick family of geodesics also contains a subset which satisfies a weakened form of RNP Lipschitz differentiability. This unifies the RNP non-biLipschitz embeddability criteria of Cheeger-Kleiner and Ostrovskii, and can also be used to prove new theorems on the non-biLipschitz embeddability of thick family of geodesics into certain product metric spaces. (Received June 10, 2019)