We produce, in a model of $\text{ZFC} + \text{MA} + \mathfrak{c} = \aleph_2$, a super Hereditarily Good space X with $|X| = w(X) = nw(X) = \aleph_2 > \chi(X) = \aleph_0$. The Hereditarily Good (HG) property is a natural strengthening of both Hereditarily Separable (HS) and Hereditarily Lindelöf (HL). A regular Hausdorff space X has the property HG (also called the pointed ccc) iff X has no weakly separated ω_1-sequences; that is, X is HG iff for all assignments $U = \langle (x_\alpha, U_\alpha) : \alpha < \omega_1 \rangle$ for X (so each $x_\alpha \in U_\alpha$ and U_α is open) $\exists \{\alpha, \beta\} \in [\omega_1]^2$ $x_\beta \in U_\alpha$ & $x_\alpha \in U_\beta$. Replacing the pair α, β by \aleph_1 elements strengthens HG to the super Hereditarily Good (suHG) property; that is, a space X is suHG iff for all assignments U for X $\exists I \in [\omega_1]^{\aleph_1}$ $\forall \alpha, \beta \in I [x_\alpha \in U_\beta]$. Every space having countable net weight is trivially suHG. Our space X is suHG and has a generalized butterfly topology having net weight \aleph_2 in an iterated forcing model of MA. (Received July 09, 2019)