For odd primes p, finding a quadratic nonresidue (QNR) using randomness is easy, as half the elements of \mathbb{F}_p^* are QNR’s. By 1796 Gauss knew, via quadratic reciprocity, that for $p \not\equiv 1 \pmod{24}$ the set $\{-1, 2, 3\}$ contains a QNR.

In 1985 Schoof, by elliptic curve point counting, showed for fixed $a \in \mathbb{Z}$, $\sqrt{a} \pmod{p}$ is computable in deterministic polynomial time (\mathcal{P}); thus, for $p \equiv 9 \pmod{16}$ the 8th roots of unity: $\pm(1 \pm i)/\sqrt{2}$ are QNR’s computable in \mathcal{P}. In 2009 Sze, using Schoof’s result, proved for $p \equiv 4 \pmod{5}$ that $(-5 - \sqrt{5})/2$ is a QNR computable in \mathcal{P}.

Using other reciprocity laws, which predict the splitting of polynomials, we give formulas for QNR’s computable in \mathcal{P}, for primes represented by select binary quadratic forms. For example, for $p = x^2 + 16 \cdot 11 y^2$, y odd, $2 + \sqrt{22}$ is a QNR.

Also, we lessen the oracle complexity of QNR construction. The number of square roots mod p needed is reduced from $\lceil \log_2(p-1) \rceil$ to $\frac{1}{2} \lceil \log_2(p-1) \rceil - 2$.

Finally, we prove that direct application of a fixed number of reciprocity laws is never sufficient to universally construct a QNR computable in \mathcal{P}. Infinitely many primes will always slip through. (Received July 15, 2019)