1167-11-177 Shanna Dobson^{*}, 5151 State University Drive, Los Angeles, CA 90032. Diamond Holographic Principle and \mathcal{D}^{\diamond} -Emergent Time. Preliminary report.

We introduced the Efimov K-theory of diamonds in a conjectured localization sequence $K(\mathcal{D}_{\diamond}) \rightarrow K^{\text{Efimov}}(\mathcal{Y}_{S,E}^{\diamond}) \rightarrow K^{\text{Efimov}}(\mathcal{Y}_{R,R^+),E})$ and modification $F_{cont}(\text{Shv}(\mathbb{S}^n, \mathcal{D}^{\diamond})) \simeq \Omega^n F_{cont}(\mathcal{D}^{\diamond})$, for \mathcal{D}^{\diamond} a stable dualizable presentable $(\infty, 1)$ category of diamonds, \mathcal{D}_{\diamond} the complex of v-stacks of locally spatial diamonds, $\mathcal{Y}_{(R,R^+),E} = \text{Spa}(R, R^+) \times_{\text{Spa}F_q} \text{Spa}_q[[t]]$ the relative Fargues-Fontaine curve, and $\mathcal{Y}_{S,E}^{\diamond} = S \times (\text{Spa}\mathcal{O}_E)^{\diamond}$ the diamond.

In this talk, we discuss our diamond holographic principle using the adjoint pairs f^* , $\mathcal{R}f_*$ and $\mathcal{R}f_!$, $\mathcal{R}f^!$ from Scholze's six operations, a sheaf of sets on $*_{\text{pro\acute{e}t}}$, and a mathematical-impurity geometric point Spa $C \to \mathcal{D}$. We then discuss emergent time from the condensed setting and investigate a condensed version of $F_{cont}(\text{Shv}(\mathbb{S}^n, \mathcal{D}^\circ)) \simeq \Omega^n F_{cont}(\mathcal{D}^\circ)$. (Received March 06, 2021)