1167-11-88 Summer Al Hamdani*, summera@mail.fresnostate.edu. Zeros of a Binomial Combination of Chebyshev Polynomials.
The sequence of Chebyshev polynomials of the second kind $\left\{U_{m}(z)\right\}_{m=0}^{\infty}$ is a well-known sequence of orthogonal polynomials whose zeros lie on the interval $(-1,1)$ and are dense there as $m \rightarrow \infty$. For $0<\alpha<1$, we discuss the zeros of the sequence of polynomials $\left\{P_{m}(z)\right\}_{m=0}^{\infty}$ generated by the reciprocal of $(1-t)^{\alpha}\left(1-2 z t+t^{2}\right)$ expanded as a power series in t. This sequence can equivalently be obtained from a linear combination of Chebyshev polynomials whose coefficients have a binomial form. We prove that the number of zeros of $P_{m}(z)$ outside the interval $(-1,1)$ is bounded by a constant independent of m. (Received February 18, 2021)

