1167-42-254Carlos A Cabrelli (carlos.cabrelli@gmail.com), , Argentina, Kathryn E Hare
(kehare@uwaterloo.ca), , Canada, and Ursula M Molter* (umolter@conicet.gov.ar),
CABA, Argentina. On the existence of Riesz bases of exponentials.

We address the following question: Given Ω , a subset of \mathbb{R}^d of finite measure, does there exist a discrete set \mathcal{B} in \mathbb{R}^d such that the exponential functions $E(\mathcal{B}) = \{e^{2\pi i\beta \cdot \omega} : \beta \in \mathcal{B}\}$ form a Riesz basis of $L^2(\Omega)$?

Using the Bohr compactification of the group of integers, we are able to find necessary and sufficient condition to ensure that a *multi-tile* $\Omega \subset \mathbb{R}^d$ of positive measure (but not necessarily bounded) admits a structured Riesz basis of exponentials for $L^2(\Omega)$. The main novelty is the necessity of the condition, since before sufficient conditions had been derived.

Recall that a set $\Omega \subset \mathbb{R}^d$ is a k-multi-tile for \mathbb{Z}^d if $\sum_{\lambda \in \mathbb{Z}^d} \chi_{\Omega}(\omega - \lambda) = k$ a.e. $\omega \in \mathbb{R}^d$. (Received March 08, 2021)