Supplementary Remarks to Ch.V, §1: Representation of Compact Lie Groups.

The notation of the book will be kept.

Remark 1. On p. 498 middle it is stated that the set $\Lambda(\pi)$ is "clearly" invariant under the Weyl group W. In fact, let $\lambda \in \Lambda(\pi), s \in W$ and select $u \in U$ with $\operatorname{Ad}\left(u^{-1}\right)$ realizing s on \mathfrak{t}. Then if $H \in \mathfrak{t}, v \in V_{\lambda}$,

$$
\begin{aligned}
\pi(\exp H) \pi(u) v & =\pi(u) \pi\left(u^{-1}\right) \pi(\exp H) \pi(u) v=\pi(u) \pi(\exp s H) v \\
& =\pi(u) e^{\lambda(s H)} v=e^{\left(s^{-1} \lambda\right)(H)} \pi(u) v .
\end{aligned}
$$

So $s^{-1} \lambda \in \Lambda(\pi)$ as stated.
Remark 2, p. 502. The function h in (17) is $\not \equiv 0$. In fact, the subsequent integral formula for $\int \widetilde{h} \bar{\chi} d u$ shows that $|\widetilde{h}|^{2}$ has integral $\neq 0$.

Remark 3, p. 543. Exercise A1 stating

$$
\langle\delta+\rho, \delta+\rho\rangle-\langle\rho, \rho\rangle=1
$$

has a hint on p. 390 that seems a bit short. For more details, let X_{1}, \ldots, X_{n} be a basis of \mathfrak{u} orthonormal for the Killing form \langle,$\rangle . As shown in Exercises A1, A4 in Ch. II (solutions pp. 567-$ 568) the Laplace-Beltrami operator L_{U} satisfies

$$
L_{U}=-\sum_{i} \widetilde{X}_{i} \widetilde{X}_{i} .
$$

The representation ad of \mathfrak{u} extends to the universal enveloping algebra so

$$
\operatorname{ad}\left(L_{U}\right)=-\sum_{i} \operatorname{ad} \widetilde{X}_{i} \text { ad } \widetilde{X}_{i}
$$

and each member in this formula is a linear transformation of \mathfrak{u}. By Lemma 1.6(i) ad $\left(L_{U}\right)=c I$ and by Lemma 1.6(ii) $L_{U} \chi=c \chi$. On the other hand, the linear transformation ad \widetilde{X}_{i} is just ad X_{i} so taking trace of the above equation we get

$$
c \operatorname{dim} \mathfrak{u}=-\operatorname{Tr}\left(\sum_{i} \operatorname{ad} X_{i} \text { ad } X_{i}\right)=-\operatorname{dim} \mathfrak{u} .
$$

Thus $c=-1, L_{U} \chi=-\chi$ so the result follows from (16), δ being the highest weight of ad.
Another proof of the formula is given in Freudenthal-de Vries, Section 4.3.3.
Remark 4. We now invoke the simply connected complex group G with Lie algebra \mathfrak{g}.
Let H, N and \bar{N} denote the analytic subgroups corresponding to the subalgebras

$$
\mathfrak{t}, \mathfrak{n}=\sum_{\alpha>0} \mathfrak{g}^{\alpha}, \overline{\mathfrak{n}}=\sum_{\alpha<0} \mathfrak{g}^{\alpha} .
$$

Let B denote the group $H N$ with Lie algebra $\mathfrak{b}=\mathfrak{t}+\mathfrak{n}$.
a) The space G / B is compact.

For this consider the orbit $U \cdot e B$ of U in G / B. It is a compact submanifold but since $\mathfrak{u} \cap \mathfrak{b}=\mathfrak{t}_{0}$ the dimension equals $\operatorname{dim} \mathfrak{u}-\operatorname{dim} \mathfrak{t}_{0}$ which equals $\operatorname{dim}_{\mathbf{C}} \mathfrak{g}-\operatorname{dim}_{\mathbf{C}} \mathfrak{t}$ which in turn equals $\operatorname{dim}_{\mathbf{R}} G / B$. Thus $U \cdot e B$ is all of G / B, which thus is compact.
b) Let $\lambda \in \Lambda$. Since $\lambda(H) \in 2 \pi i \mathbf{Z}$ if $\exp H=e$ there exists a holomorphic homomorphism $\omega: H \rightarrow \mathbf{C}^{\times}$. We extend this to a homomorphism $\omega: B \rightarrow \mathbf{C}^{\times}$by $\omega(h n)=\omega(h)$ and consider the vector space $V_{\omega}=\{F$ holomorphic on $G: F(g b)=\omega(b) F(g)$.
If non zero, V_{ω} is the space of sections of the line bundle over G / B defined by the homomorphism ω.
c) $\operatorname{dim} V_{\omega}<\infty$.

The space G / B is compact and the vector space V_{ω} (of holomorphic sections) becomes a Banach space when topologized by the uniform norm. Since a uniformly bounded sequence of holomorphic functions has a subsequence converging uniformly on compact subsets, V_{ω} is locally compact. Since a locally compact Banach space is finite-dimensional the statement follows.
d) The left action σ_{ω} of G on V_{ω} is irreducible.

By the semisimplicity of $G, V_{\omega}=\oplus_{i} V_{i}$, where G acts irreducibly on each V_{i}. Let $F \in V_{i}$ be a lowest weight vector. Then $F(\bar{n} g) \equiv F(g)$. Thus $F(\bar{n} h n)=F(h n)=\omega(h) F(e)$. Since $\bar{N} H N$ contains a neighborhood of e in G and since F is holomorphic, $\mathbf{C} F$ is the same for all i. This proves the irreducibility of σ_{ω}.
e) Let $\lambda \in \Lambda(+)$ and $\pi=\pi_{\lambda}$ the representation of G on V with highest weight λ. Then σ_{ω} in \mathbf{d}) is equivalent to the contragredient of π operating on the dual space V^{\prime} :

$$
\sigma_{\omega} \sim \check{\pi}
$$

and the highest weight is $-s \lambda$ where $s \in W$ maps \mathfrak{t}^{+}into $-\mathfrak{t}^{+}$.
For this let \mathbf{e} and \mathbf{e}^{\prime}, respectively, denote highest weight vectors for π and $\check{\pi}$. Let $u \in U$ induce the Weyl group element s. Let ψ on G / N be defined by

$$
\psi(g N)=\left\langle\pi\left(g^{-1}\right) \mathbf{e}, \mathbf{e}^{\prime}\right\rangle
$$

Then $\psi \not \equiv 0$ and the space V_{ψ} spanned by left translates of ψ is finite-dimensional. Since each $v \in V$ is a linear combination of translates $\pi\left(g_{i}^{-1}\right) \mathbf{e}$ the mapping

$$
v \rightarrow \Psi_{v}, \quad \Psi_{v}(g N)=\left\langle\pi\left(g^{-1}\right) v, e^{\prime}\right\rangle
$$

maps V into V_{ψ} and satisfies

$$
\Psi_{\pi(x) e}=\Psi^{\tau(h)}
$$

setting up an equivalence between π on V and the natural representation of G on V_{ψ}.
Similarly, the contragredient representation $\check{\pi}$ induces the function

$$
\check{\psi}(g N)=\left\langle\check{\pi}\left(g^{-1}\right) \mathbf{e}^{\prime}, \mathbf{e}\right\rangle=\left\langle\mathbf{e}^{\prime}, \pi(g) \mathbf{e}\right\rangle=\psi\left(g^{-1} N\right) .
$$

For $H \in \mathfrak{t}$,

$$
\psi(\exp H u N)=\check{\psi}\left(u^{-1} \exp (-H) N\right)=\check{\psi}\left(\exp (-s H) u^{-1} N\right)
$$

whence

$$
e^{-\lambda(H)} \psi(u N)=e^{\mu(s H)} \check{\psi}\left(u^{-1} N\right)
$$

where μ is the highest weight of $\check{\pi}$. Thus $\mu=-s \lambda$.

Extend λ to the homomorphism, $\omega: H \rightarrow \mathbf{C}^{\times}$. For $v^{\prime} \in V^{\prime}$ the function

$$
F_{v^{\prime}}(g)=\left\langle\pi(g) \mathbf{e}, v^{\prime}\right\rangle
$$

then satisfies $F_{v^{\prime}}(g b)=\omega(b) F_{v^{\prime}}(g)$ so $F_{v^{\prime}} \in V_{\omega}$. Also

$$
\left(\sigma_{\omega}(z) F_{v^{\prime}}\right)(g)=F_{v^{\prime}}\left(z^{-1} g\right)=\left\langle\pi(g) \mathbf{e}, \check{\pi}(z) v^{\prime}\right\rangle=F_{\pi}^{\check{\pi}(z) v^{\prime}}(g)
$$

so by d) σ_{ω} is equivalent to $\check{\pi}$. This establishes the following geometric model of $\check{\pi}_{\lambda}$.
Theorem. The representation $\check{\pi}_{\lambda}$ is realized as the action of G on the space of holomorphic sections of the line bundle of G over G / B defined by the homomorphism $\omega: B \rightarrow \mathbf{C}^{\times}$given by $\omega(\exp H n)=$ $e^{\lambda H}(H)$.

References for Theorem: Borel-Weil in Serre, Séminaire Bourbaki, Exposé 100, 1954, Tits [1955], p. 113 and Harish-Chandra Representations of semisimple Lie groups V (Theorem 1), Amer. J. Math. 77 (1955), 743-777. Parts c) and d) simplify the customary proofs considerably.

