
Supplementary Remarks to Ch.V, §1: Representation of Compact Lie Groups.

The notation of the book will be kept.

Remark 1. On p. 498 middle it is stated that the set Λ(π) is “clearly” invariant under the
Weyl group W . In fact, let λ ∈ Λ(π), s ∈W and select u ∈ U with Ad (u−1) realizing s on t. Then
if H ∈ t, v ∈ Vλ,

π(expH)π(u)v = π(u)π(u−1)π(expH)π(u)v = π(u)π(exp sH)v

= π(u)eλ(sH)v = e(s
−1λ)(H)π(u)v .

So s−1λ ∈ Λ(π) as stated.

Remark 2, p. 502. The function h in (17) is 6≡ 0. In fact, the subsequent integral formula
for

∫
h̃χ̄ du shows that |h̃|2 has integral 6= 0.

Remark 3, p. 543. Exercise A1 stating

〈δ + ρ, δ + ρ〉 − 〈ρ, ρ〉 = 1

has a hint on p. 390 that seems a bit short. For more details, let X1, . . . , Xn be a basis of u

orthonormal for the Killing form 〈 , 〉. As shown in Exercises A1, A4 in Ch. II (solutions pp. 567–
568) the Laplace-Beltrami operator LU satisfies

LU = −
∑

i

X̃iX̃i .

The representation ad of u extends to the universal enveloping algebra so

ad (LU ) = −
∑

i

ad X̃i ad X̃i

and each member in this formula is a linear transformation of u. By Lemma 1.6(i) ad (LU ) = cI
and by Lemma 1.6(ii) LUχ = cχ. On the other hand, the linear transformation ad X̃i is just ad Xi

so taking trace of the above equation we get

c dimu = −Tr

(∑

i

ad Xi ad Xi

)
= −dimu .

Thus c = −1, LUχ = −χ so the result follows from (16), δ being the highest weight of ad .
Another proof of the formula is given in Freudenthal-de Vries, Section 4.3.3.

Remark 4. We now invoke the simply connected complex group G with Lie algebra g.
Let H, N and N̄ denote the analytic subgroups corresponding to the subalgebras

t, n =
∑

α>0

gα , n̄ =
∑

α<0

gα .

Let B denote the group HN with Lie algebra b = t + n.
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a) The space G/B is compact.

For this consider the orbit U · eB of U in G/B. It is a compact submanifold but since
u ∩ b = t0 the dimension equals dimu − dim t0 which equals dimC g − dimC t which in turn
equals dimRG/B. Thus U · eB is all of G/B, which thus is compact.

b) Let λ ∈ Λ. Since λ(H) ∈ 2πiZ if expH = e there exists a holomorphic homomorphism
ω : H → C×. We extend this to a homomorphism ω : B → C× by ω(hn) = ω(h) and consider
the vector space Vω = {F holomorphic on G : F (gb) = ω(b)F (g).

If non zero, Vω is the space of sections of the line bundle over G/B defined by the homomor-
phism ω.

c) dimVω <∞.

The space G/B is compact and the vector space Vω (of holomorphic sections) becomes a
Banach space when topologized by the uniform norm. Since a uniformly bounded sequence
of holomorphic functions has a subsequence converging uniformly on compact subsets, Vω is
locally compact. Since a locally compact Banach space is finite-dimensional the statement
follows.

d) The left action σω of G on Vω is irreducible.

By the semisimplicity of G, Vω = ⊕iVi, where G acts irreducibly on each Vi. Let F ∈ Vi be a
lowest weight vector. Then F (n̄g) ≡ F (g). Thus F (n̄hn) = F (hn) = ω(h)F (e). Since N̄HN
contains a neighborhood of e in G and since F is holomorphic, CF is the same for all i. This
proves the irreducibility of σω.

e) Let λ ∈ Λ(+) and π = πλ the representation of G on V with highest weight λ. Then σω
in d) is equivalent to the contragredient of π operating on the dual space V ′:

σω ∼ π̌ ,

and the highest weight is −sλ where s ∈W maps t+ into −t+.

For this let e and e′, respectively, denote highest weight vectors for π and π̌. Let u ∈ U
induce the Weyl group element s. Let ψ on G/N be defined by

ψ(gN) = 〈π(g−1)e, e′〉 .

Then ψ 6≡ 0 and the space Vψ spanned by left translates of ψ is finite-dimensional. Since each
v ∈ V is a linear combination of translates π(g−1

i )e the mapping

v → Ψv , Ψv(gN) = 〈π(g−1)v, e′〉

maps V into Vψ and satisfies

Ψπ(x)e = Ψτ(h) ,

setting up an equivalence between π on V and the natural representation of G on Vψ.

Similarly, the contragredient representation π̌ induces the function

ψ̌(gN) = 〈π̌(g−1)e′, e〉 = 〈e′, π(g)e〉 = ψ(g−1N) .

For H ∈ t,
ψ(expHuN) = ψ̌(u−1 exp(−H)N) = ψ̌(exp(−sH)u−1N) ,

whence
e−λ(H)ψ(uN) = eµ(sH)ψ̌(u−1N) ,

where µ is the highest weight of π̌. Thus µ = −sλ.

2



Extend λ to the homomorphism, ω : H → C×. For v′ ∈ V ′ the function

Fv′(g) = 〈π(g)e, v′〉

then satisfies Fv′(gb) = ω(b)Fv′(g) so Fv′ ∈ Vω. Also

(σω(z)Fv′ )(g) = Fv′(z
−1g) = 〈π(g)e, π̌(z)v′〉 = Fπ̌(z)v′(g)

so by d) σω is equivalent to π̌. This establishes the following geometric model of π̌λ.

Theorem. The representation π̌λ is realized as the action of G on the space of holomorphic sections

of the line bundle of G over G/B defined by the homomorphism ω : B → C× given by ω(expHn) =
eλH(H).

References for Theorem: Borel-Weil in Serre, Séminaire Bourbaki, Exposé 100, 1954, Tits [1955],
p. 113 and Harish-Chandra Representations of semisimple Lie groups V (Theorem 1), Amer. J.
Math. 77 (1955), 743-777. Parts c) and d) simplify the customary proofs considerably.
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