Mirror Symmetry II

B. Greene and S.-T. Yau, Editors
Mirror
Symmetry II
This page intentionally left blank
Mirror Symmetry II

B. Greene and S.-T. Yau, Editors
3 From complete intersections to hypersurfaces .. 76
4 Complete intersections and nef-partitions .. 80
5 Mirrors of rigid Calabi–Yau manifolds ... 82

Mirror Symmetry Constructions: A Review,
by Per Berglund, Sheldon Katz

1 Introduction ... 87
2 $N=2$ Landau-Ginzburg models .. 89
 2.1 General framework .. 89
 2.2 Fractional transformations .. 91
 2.3 Transposition ... 92
3 The toric approach ... 94
 3.1 Toric Generalities .. 94
 3.2 Batyrev’s construction .. 96
 3.3 The construction of Batyrev and Borisov .. 98
 3.4 Transposition via toric geometry ... 100
 3.5 Examples .. 102
4 Discussions .. 108

On the Elliptic Genus and Mirror Symmetry,
by Per Berglund, Måns Henningson

1 Introduction ... 115
2 Landau-Ginzburg orbifolds and the elliptic genus 117
 2.1 The elliptic genus .. 117
 2.2 The Poincaré polynomial .. 119
3 Mirror symmetry for Landau-Ginzburg orbifolds 120
 3.1 General results .. 120
 3.2 Examples .. 123

Orbifold Euler Characteristic,
by Shi-shyr Roan

1 Introduction .. 129
2 Loop space of an orbifold ... 131
3 Equivariant K-theory interpretation ... 132
4 Kleinian Surface Singularities ... 132
5 Toric resolution ... 133
6 Minimal resolution of a double cover .. 137

II The Structure of Moduli Space ..

Phases of $N=2$ Theories in Two Dimensions,
by Edward Witten .. 143
4.3 Asymptotic Mirror Symmetry and The Monomial-Divisor
 Mirror Map .. 255
5 An Example ... 256
 5.1 A Mirror Pair of Calabi–Yau Spaces 257
 5.2 The Moduli Spaces ... 260
 5.3 Results .. 263
 5.4 Discussion .. 266
6 The Fully Enlarged Kähler Moduli Space 266
7 Conclusions ... 275

Picard–Fuchs Equations, Special Geometry and Target Space Duality,
by A. Ceresole, R. D’Auria, S. Ferrara, W. Lerche, J. Louis and T. Regge
1 Introduction and Summary 281
 2 Differential equations for one variable 288
 2.1 Linear differential equations and W–generators 288
 2.2 First order equations 292
 3 Differential equations for arbitrary many moduli 294
 3.1 Holomorphic Picard-Fuchs equations and special geometry 294
 3.2 Non–holomorphic Picard–Fuchs equations 300
 3.3 Singular Picard–Fuchs systems 301
 4 Relation to Calabi–Yau manifolds and topological field theory 303
 5 Target space duality and monodromy properties of Picard-Fuchs equations .. 308
 5.1 An abelian subgroup of the duality group 320
 6 Duality group of an example with two moduli 323
 6.1 Introduction .. 323
 6.2 The fundamental group of $W(y; a, b)$ 325
 6.3 Behaviour of the periods around the singular curve 330
 6.4 The monodromy generators 334
 6.5 The duality group ... 338
 Appendix A. Special Geometry 340
 A.1 Kähler–Hodge manifolds 340
 A.2 Special Kähler manifolds 342
 Appendix B. Remarks on $w_3 = 0$ and covariantly constant w_4 345
 Appendix C. Differential equations for cubic F-functions 347

Resolution of Orbifold Singularities in String Theory,
by Paul S. Aspinwall ... 355
 1 Introduction .. 355
 2 Classical Geometry ... 359
 3 Conformal Field Theory 366
 4 Exploring the Moduli Space 369
 5 Quotient Singularities in Two Dimensions 375
Scaling Behavior On The Space Of Calabi–Yau Manifolds,
by R. Schimmrigk 443
1 Introduction. .. 443
2 The Variables. 444
3 The Class. .. 446
4 The Results. .. 447

III Enumerative Issues and Mirror Symmetry 455

Making enumerative predictions, by Means of Mirror Symmetry
by David R. Morrison 457
1 Coordinates on the B-model moduli space 459
2 The large radius limit 461
 2.1 The nonlinear σ-model 461
 2.2 The A-model parameter space 463
 2.3 Flat coordinates and the large radius limit 464
3 Maximally unipotent monodromy 466
4 Equivalence among boundary points 470
5 Determining the mirror map (two conjectures) 473
 5.1 A conjecture about integral cohomology 473
 5.2 The monomial-divisor mirror map 475
6 Making enumerative predictions 477

Mirror Symmetry for Two Parameter Models – I,
by Philip Candelas, Xenia de la Ossa, Anamaria Font, Sheldon Katz,
David R. Morrison 483
1 Introduction ... 483
2 Geometry of Calabi–Yau Hypersurfaces in \(\mathbb{P}^{(1,1,2,2,2)} \) and \(\mathbb{P}^{(1,1,2,2,6)} \) 485
 2.1 Linear systems 485
 2.2 Curves and the Kähler cone 487
 2.3 Chern classes 488
3 The Moduli Space of the Mirror 489
 3.1 Basic facts 489
 3.2 The locus \(\phi^2 = 1 \) 492
 3.3 More about the moduli space 493
4 Monodromy and the Large Complex Structure Limit 496
 4.1 The large complex structure limit 496
 4.2 Monodromy calculations 498
5 Considerations of Toric Geometry 502
6 The Periods 506
 6.1 The fundamental period 506
 6.2 The Picard–Fuchs equations 508
Contents

6.3 Analytic properties of the fundamental period 508
6.4 Analytic continuation of the periods 515
7 The Mirror Map and Large Complex Structure Limit 519
7.1 Generalities ... 519
7.2 The large complex structure limit for $\mathbb{P}^{(1,1,2,2,2)[8]}$ 520
7.3 Inversion of the mirror map 523
8 The Yukawa Couplings and the Instanton Expansion 527
8.1 The couplings ... 527
8.2 Instantons of genus one 532
9 Verification of Some Instanton Contributions 534

Mirror Symmetry, Mirror Map and Applications to Complete Intersection Calabi–Yau Spaces,
by S. Hosono, A. Klemm, S. Theisen and S.-T. Yau 545
1 Introduction ... 545
2 Calculation of the classical topological data of CICYs 548
3 Derivation of the Picard–Fuchs equations 549
4 Local behaviour of the solutions, mirror map and instanton-corrected Yukawa couplings 555
5 Selected examples ... 564
6 Connection with rational superconformal theories 583
7 Topological one-loop partition function and the number of elliptic curves 587
8 Discussion .. 595
Appendix A. The pole structure in the coefficients of the logarithmic solutions to the Picard–Fuchs equation 596
Appendix B. Predicted numbers of lines for complete intersections in $\mathbb{P}^3 \times \mathbb{P}^3$ and $\mathbb{P}^3 \times \mathbb{P}^2$ 601

Gromov–Witten Classes, Quantum Cohomology, and Enumerative Geometry,
by M. Kontsevich, Yu. Manin 607
1 Introduction ... 607
2 Gromov–Witten classes 609
3 First Reconstruction Theorem 619
4 Potential, associativity relations, and quantum cohomology 622
5 Examples .. 633
6 Cohomological Field Theory 640
7 Homology of moduli spaces 645
8 Second Reconstruction Theorem 648

Holomorphic Anomalies in Topological Field Theories,
by M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa 655
1 Introduction ... 655
2 Topological Limit 659
3 Low Dimensional Examples and Quantum Mirror Symmetry 665
Appendix A. Contact Term Contribution 672
Appendix B. Intersection Theory over Moduli Spaces of Degenerate
 Instantons, by Sheldon Katz 674

Local behavior of Hodge structures at infinity,
by P. Deligne ... 683

IV Mirror Symmetry in Higher and Lower Dimensions 701

String Theory on K3 Surfaces,
by Paul S. Aspinwall, David R. Morrison 703
 1 Introduction ... 703
 2 The Moduli Space ... 705
 3 The Space of Total Cohomology 710
 4 Mirror Symmetry for Algebraic K3 Surfaces 712

K3 Surfaces with Involution and Mirror Pairs of Calabi–Yau Manifolds,
by Ciprian Borcea ... 717
 1 The mirror scenario 719
 2 Calabi–Yau manifolds with involution. The basic construction .. 720
 3 Nikulin’s classification of K3 surfaces with involution 721
 4 Mirror pairs of Calabi–Yau threefolds 723
 5 Relations with hypersurfaces in weighted projective spaces 724
 6 Relations with Arnold’s “strange duality” 728
 7 Reflexive polyhedra and Batyrev’s duality 730
 8 Relations with fibre products of rational elliptic surfaces with section 734
 9 Other mirror pairs. Hilbert polynomials 737
 10 Higher dimensions .. 739

Mirror Manifolds in Higher Dimension,
by Brian R. Greene, David R. Morrison and M. Ronen Plesser 745
 1 Introduction ... 745
 2 Calabi–Yau Moduli Spaces for $d > 3$ 748
 2.1 Mathematical Preliminaries 749
 2.2 Picard–Fuchs Equations 751
 2.3 Analogs of Special Geometry 754
 3 Yukawa Couplings, Series Expansions and Factorization 756
 3.1 The Computation 758
 3.2 Factorization and Three-Point Functions 760
 4 The Mirror Map and Three-Point Functions 764
4.1 The Gauss–Manin Connection and the Choice of Basis ... 757
4.2 Holomorphic Picard–Fuchs Equation and Three-Point Functions ... 773
4.3 Factorization and the Other Yukawa Couplings ... 776
5 Mathematical Interpretation and Comparison of Instanton Sums ... 779
6 Conclusions ... 782
Appendix A. Some Remarks on Covariant Derivatives ... 783
Appendix B. The Multiple Cover Formula in Higher Dimension ... 784

Supermanifolds, Rigid Manifolds and Mirror Symmetry,
by S. Sethi
1 Introduction ... 793
2 Landau-Ginzburg Orbifolds and Non-linear Sigma Models ... 795
 2.1 A Path-Integral Argument ... 795
 2.2 Relation to Rigid Manifolds ... 797
3 Supermanifolds ... 798
 3.1 Conditions for Conformal Invariance ... 798
 3.2 Super-Ricci Flat Metrics ... 800
4 The Chiral Ring ... 802
 4.1 General Features ... 802
 4.2 The Hodge Structure ... 805
 4.3 Kähler Moduli ... 811
5 Conclusions ... 812
Glossary ... 816
Index ... 839
This page intentionally left blank
Foreword

Mirror symmetry has undergone dramatic progress since the Mathematical Sciences Research Institute workshop in 1991 whose proceedings constitute volume I of this continuing collection. Tremendous insight has been gained on a number of key issues, and it is the purpose of the present volume to survey some of these results. Some of the contributions are reprints of papers which have appeared elsewhere while others were written specifically for this collection.

The areas covered are organized into four sections, and each presents papers by both physicists and mathematicians. Section I focuses on the present understanding of explicit constructions of mirror manifolds. Paper 1 briefly reviews the notion of path integration to assist those less familiar with this physical tool. Paper 2 reviews the first, and at present, only known construction of mirror manifolds, at the level of conformal field theory. Paper 3 discusses a more general construction of mirror pairs, which as yet has not been established in conformal field theory, and paper 4 reviews this and other conjectured constructions. Paper 5 discusses mirror symmetry in the context of Landau-Ginsburg theories and paper 6 reviews properties of the orbifolding operation, from a mathematical perspective.

Section II focuses on work that has honed our understanding of both Calabi-Yau and conformal field theory moduli spaces. Papers 7 and 8 discuss properties of the enlarged Kähler moduli space required by conformal field theory, and in particular, establish the first concrete arena for physically smooth spacetime topology change. Paper 9 discusses aspects of geometrical structure of such moduli spaces and, in paper 10, some of the newfound understanding of moduli space is applied to the case of orbifold theories. In paper 11, the classification problem for Calabi-Yau's is discussed; in paper 12 Witten's notion of thickening the moduli space is described from a mathematical perspective and in paper 13 an example of an obstructed moduli space is discussed. Paper 14 presents an introductory discussion of duality properties of moduli space, paper 15 embarks on the issue of non-compact Calabi-Yau spaces while paper 16 discusses some interesting Calabi-Yau numerology.

Section III focuses on developments in using mirror symmetry to solve difficult counting problems, i.e. problems in enumerative geometry. Papers 18 and 19 discuss the methods for counting rational curves for examples whose parameter space is larger than one, while paper 17 presents a review of the multi-parameter case in general. Paper 20 places the physical approach to these enumerative problems on more firm mathematical foundation, as well as applying such methods to a variety of counting problems. Paper 21 resolves a number of key issues in mirror symmetry such as the form of the mirror map, in addition to providing a means of extending the domain of accessible counting problems to higher genus curves. In paper 22, some aspects of the methods used in applying mirror symmetry to enumerative problems
are placed in an appropriate mathematical framework.

Section IV focuses on the extension of mirror symmetry away from the familiar case of complex dimension three to both lower and higher dimension. Papers 23 and 24 discuss mirror symmetry for complex dimension 2 and papers 24 and 25 discuss various aspects of mirror symmetry in dimension greater than 3.

Due to space limitations, there are a number of equally interesting and important developments that have not been included. The papers of this volume, though, will undoubtedly allow the reader to gain much insight into both the physics and the mathematics of the remarkable structure of mirror symmetry.

The editors wish to thank Arthur Greenspoon and Misha Verbitsky, whose tremendous work and dedication has greatly improved the technical quality of this volume.
Glossary

P–Riemann symbol, 322
ansatz, 434, 587, 752, 758, 765, 789
anti-chiral components
– of the gaugino field, 347
anti-chiral fields, 651, 652, 660
– primary, 51, 740
anti-chiral multiplets, 154, 157
anti-chiral operators
– primary, 785
anti-chiral perturbations, 652
anti-DeRham algebra, 396
anti-instanton field
– of instanton number \((-k/n)\), 179
anti-instantons, 179, 180
Arnold’s strange duality, 703, 708, 712, 723, 729, 737
– extension to Kodaira singularities, 724
axion field, 428
– antisymmetric, 291
axionic instantons, 429, 437

Barnes type integral, 515
Batyrev’s duality, 725
Beltrami differential, 668
Berezin integration, 796, 802
Bertin-Markushevich criterion for resolutions, 144
Bianchi identities, 157, 419
– on supercurvature, 347
Bismut measure, twisted, 138
Bogomolov–Tian–Todorov theorem, 283, 404, 459, 460
BRST, 175, 176, 180, 557, 651, 658, 660, 795

Calabi–Yau
– backgrounds (of the superconformal field theories), 428, 429
– compactifications, 292, 296, 429, 553, 709
– complete intersections, 81, 85, 87, 88, 90, 91, 94, 107, 113, 114
–, – lines on, 119
– conformal field theories, 64, 219
– double covering, 733
– elliptic fibre spaces, 391
– family
–, – mirror of, 731
– Fermat hypersurfaces, 741
– models, 162, 165, 169, 171
–, – conformal invariance of, 152
– orbifold
–, – definition, 360
–, – at the edge of the Kähler cone, 361
– phase, 97, 99, 109, 190, 196, 197, 200, 213, 372, 381
–, – transition point, 381
– quintic, 315
–, – moduli of, 293
– region in the moduli space, 66, 363
– region in the moduli space
–, – smooth, 277
– resolution, 112, 136, 715
–, – definition, 137
– sigma-model
–, – nonlinear, 172
– sigma-models, 38, 41, 42, 45, 46, 55–57, 59, 61–66, 77, 124, 151, 193, 224, 226, 275, 653, 709
–, – region in the moduli space, 65
– theories, 109
Glossary

- , - orbifold, 221
- , - relation to Landau-Ginzburg theories, 65
- , - smooth, 221
- theory, 114
- , - with moduli space containing a minimal model region, 66
- vacua, 383, 394
- vacuum state, 49
Calabi–Yau hypersurfaces, 106, 116, 194, 230, 246, 253, 259, 264, 274, 571, 572, 725
- as target spaces, 180
- in Fano toric varieties, 712, 728, 729
- in Grassmanian, 195
- in terms of the Newton polyhedron, 109
- in toric varieties, 248, 250
- in weighted projective 4–space, 443
- in weighted projective space, 43, 64, 151, 189, 251, 310, 449–451, 485
- quintic, 59, 61
- singular, 725
- weighted, 449
- A– and B– models associated with, 458, 638
- , , definition, 459
- A-model associated with, 751
- definition, 29, 42, 714
- 2-dimensional, 699
- 3-dimensional, 444, 445, 447
- 6-dimensional, 757
- anti-DeRham algebra on, 396
- as a blow-up, 359
- birational equivalence class of, 153
- birationally equivalent, 200
- blown-up orbifold vs. generic, 360
- canonical basis in homology, 344
- CFT associated with, 43
- classification using Fujita index, 444
- complete intersection CY manifold, 551
- complex structure moduli of, 330
- complexified Kähler cone of, 220, 222
- computations of Yukawa couplings for, 310
- coordinates on the moduli space of, 449
- corresponding to the same CFT, 43
- counting rational curves on, 458
- discriminant, 554
- family of, 681
- Fermat
- , , definition, 50
- generalized, 81, 82, 85, 87, 94, 119
- , , definition, 84
- , , mirror families of, 85
- Gromov–Witten classes for, 610, 616, 622, 632
- heterotic strings compactified on, 653
- hyperkähler, 438
- intersection numbers of, 292, 313
Kähler cone of, 282, 362
large radius, 261
mirror map for, 629
mirror pairs of, 41, 42, 75, 80, 235, 458, 708
explicit construction of, 43
mirror partner of, 741
mirror symmetry for, 776
mirror symmetry in higher dimension, 750
moduli of, 230, 396, 557, 559
Kähler and complex, 219
non-compact, 185, 186, 202
obstructions to deformation, 229
of complex dimension at most ten, 776
orbifold vs. generic, 363
orbifolds as a special case of, 277
period matrix of, 290
Picard–Fuchs equations for, 287, 290
Picard–Fuchs system of
1-dimensional, 313
quintic, 313
QFT associated with, 457
rational curves on, 776
resolutions, 364
rigid, 80–82, 91, 94, 714, 786, 806
Schottky problem for, 309
second Chern class of, 445
singular degenerations of, 484
small radius limit of, 97
space of Kähler forms on, 232
special geometry equations, 652
string theoretic applications of, 740
superpotential for, 291
supersymmetric sigma model on, 653

theorem of Bogomolov, Tian and Todorov for, 459
topological field theory on, 698
topology change, 224
two-moduli family of, 329
WDVV-equations for, 605
with \(b_{11} = 2, 483 \)
with \(h^{d-1,1}(M) = 1, 752, 759 \)
with an exceptional divisor, 536
with involution, 715, 734
with Killing symmetries, 428

Calabi–Yau moduli, 78, 82, 220, 223, 382, 540, 699, 709, 710, 739, 743, 797
definition, 46
3-dimensional vs. higher-dimensional, 741
as a subregion of the CFT moduli, 47
boundary points in, 221
conifold point of, 222
duality group of, 321, 344
for higher dimension, 742
large radius (classical) limit of, 289
large radius limit of, 297
orbifold point, 362
restricted geometry for, 347
special geometry of, 309, 748
definition, 742

Calabi–Yau spaces, 80, 100, 225, 228, 279, 405, 428, 429, 545
different, but yielding isomorphic \(\sigma \)-models, 226
family of, 258, 413
family whose generic member is smooth, 543
flopping, 48
infinite volume, 62
interpretations of CFT in terms of, 226
Kähler structure on, 224
Glossary

- metrically degenerate, 220
- mirror family of, 224
- mirror map for, 559
- mirror pairs of, 44, 45, 137, 221, 223, 226, 233, 263, 270
- singular, 219, 222, 228, 234, 235, 404, 719, 720
- topologically distinct resolutions of, 236, 246
- with canonical singularities, 404–407, 410
- with moduli of, 404
- with orbifold singularities, 221
- with quotient singularities, 278, 280
- with terminal singularities, 413

Calabi–Yau theorem, 387

Calabi–Yau threefolds, 113, 279, 385, 387, 389, 393, 473, 544, 696, 712, 720, 729, 759

N=2 supergravity models associated to, 743

definition, 384, 459

compactifications
- of the heterotic string, 286
- comprehensive moduli space of, 714
- family of, 713
- Gromov–Witten classes for, 608
- holomorphic 3-form on, 33
- in string theory, 739
- integral cohomology groups of, 473
- mirror pairs of, 457, 718, 740
- models, 385, 387, 391
- minimal, 387, 392
- singular, 390
- moduli spaces of, 219
- moving to Landau–Ginzburg, 280
- nodal, 732

Picard–Fuchs equations for, 287, 744
- prepotential for, 557
- rational curves on, 477
- superstring compactifications on, 286
- with $h^{2,0} = 0$, 699
- with Picard number one, 735

Calabi–Yau/Landau–Ginzburg correspondence, 152, 162, 179, 187, 213–215, 226

Cartan matrix for E_8, 700

Cartan–Weyl basis, 353

Cartier divisors, 366, 386, 389, 390

- semi-ample, 89

- a one-parameter family of, 223
- a. k. a. quantum algebraic geometry, 282

- as a limit of Landau–Ginzburg, 117

- associated to geometrical cohomology, 73

- automorphism yielding the mirror construction, 77

- Calabi–Yau, Landau–Ginzburg as approximations of, 99

- central charge of, 55

- chiral rings of, 743

- compactified moduli space of, 378

- constructed from nonlinear σ-models with Calabi–Yau target spaces, 55

- correlation functions, 76

- corresponding to the cohomology ring of the target space,
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>820</td>
</tr>
</tbody>
</table>

Glossary

- deformations of, 42, 222
- different geometrical realizations of, 222
- flopping rational curves in, 234
- flops in, 281, 282
- geometrical interpretation of, 76
- having a geometrical interpretation in terms of σ-models, 227
- infrared, 172
- interpolating from Landau–Ginzburg to Calabi–Yau, 172
- Kähler moduli space, 232
- lowest order approximations to, 228
- marginal operators, 42, 226
- marginal perturbations in, 227
- minimal model, 50, 52, 55, 64
- mirror pairs as equivalent CFTs, 99
- mirror symmetry in, 234
- mirror symmetry, at the level of, 123
- moduli space of, 46–48, 73, 227, 260, 463, 699, 708, 786
- ,– geometric interpretation of, 47
- ,– geometrical interpretation of, 228, 281
- ,– quantum, 228
- non-unitary, 792
- of a nonlinear σ-model
- ,– with a Calabi–Yau target space, 77
- of a string propagating on the singular target space, 370
- of blow-ups, 372
- on K3 surfaces, 708
- operator product in, 762
- orbifold, 361
- orbifolding operation in, 66, 67
- picture of blowing-up, 363
- producing a deformation of cohomology ring, 37
- singular (one which has badly behaved physical observables), 228
- singularity of a family of, 172
- space of Kähler forms according to, 227
- tensor product of five copies of $N=2$ minimal models, 329
- tensor product theory, 55
- three-point functions, 373
- truly marginal operator, 281
- two parameter and one-parameter, 538
- two-dimensional, 223
- which have a mirror manifold realization, 223
- with a unique vacuum state (Landau–Ginzburg), 49
- with K3 target space, 698, 701, 707, 708

Chern class, 671, 672, 739, 740
- calculation of, 780
- first, 29, 42, 59, 361, 444, 452, 547, 682, 684, 714, 715, 742, 743
- ,– of generalized Calabi–Yau manifolds, 80
- ,– of line bundles, 346
- ,– of the abelian gauge field, 159
- ,– super, 786, 792, 793, 801
- formula for, 654
- second, 385, 445, 446, 488, 533, 582, 590, 673, 675, 735
- ,– in physics, 449
- top, 779, 782
- total, 546

Chern-Simons theory, 420

chiral action
– quotient by, 70
ciral algebras, 702
– extended, 699
ciral characters, 51
ciral components
– of the gaugino field, 347
– correspondence with cohomology, 651
– primary, 51, 270, 668, 740
– replacing ciral by twisted, 437
– super, 49, 60, 98, 123, 125, 154–158, 162, 163, 171, 177, 179, 187, 188, 192, 194–198, 200, 207, 209, 211, 212, 371, 430, 787
–, – kinetic energy of, 158
–, – Lagrangian involving the, 158
–, – Landau–Ginzburg theory of, 57
–, – masses, 166, 168
–, – scalar and Yukawa couplings of, 211
–, – twisted, 157–159
– twist, 371
– twisted, 431, 437, 440, 791
ciral group action, 70, 71
ciral multiplet, 210, 212, 213
ciral multiplets, 208
– charged, 151
– standard form for, 210
– turning into twisted ciral multiplets, 157
– twisted, 60
ciral operators
– primary, 785
ciral perturbations, 652
ciral primary operators, marginal, 750
ciral rings, 78, 152, 192, 289, 371, 382, 652, 785, 788, 805
– definition, 32
– decoupled, 289, 308
– decoupling, 796
– dependence on scaling weights, 794
– for Landau–Ginzburg theories, 790
– infinite-dimensional, 192
– of CFT, 743
– of the untwisted model, 175
– of the B-model, 191
– primary, 787, 799
– structure of, 797
–, – computing, 800
ciral superpotential
– twisted, 160, 167
–, – generated by quantum corrections, 162
ciral supersymmetry parameter, 347
ciralities of spinor, 153
CICY, 543, 545, 567, 593
– a. k. a. Complete intersection Calabi–Yau manifolds, 543
– connection with rational superconformal field theories, 545
– families of, 544
– mirror manifold of, 548
– topological data of, 546
cohomological field theory (CohFT), 606, 647, 649
– “economy class”, 648
– definition, 637
– deformations of, 638
– operadic correlation functions of, 648
– tree level, 637–639, 642, 645
–, – equivalence to WDVV, 646
– tree level, operadic
–, – definition, 642
cohomology, instanton-corrected, 544
Compton wavelengths of the massive fields, 181
conformal anomaly, 123, 581
conformal blocks
 – of the $SU(2)$ WZW model, 153
conformal bootstrap equations, 741
conformal fields, 97
 – truly marginal, 228
conformal models
 – “hybrid”, 281
 – Landau-Ginzburg, 281
conformal perturbation theory, 63
conformal weights, 51
 – left/right, 34
creation and annihilation operators, 31
cusp classes, 615
de Rham cohomology, 396, 462, 751, 791
 – algebra, 397
 – identification with local observables, 795
 – realization as a deformation of an algebra, 399
de Rham complex, 396, 619
de Rham operator
 – regularized, 138
Dedekind function, 533, 655
del Pezzo surfaces, 604, 606, 614, 634, 635
DeWitt supermanifolds, 791
digamma function, 514
dilaton field, 417, 422, 424, 428–430, 432, 433, 436, 437, 440
 – β-function of, 431
 – definition, 417
 – constant, 428, 432
 – dual, 432, 436, 438
 – linear term in the, 433
 – non–constant, 429
 – vanishing of the holomorphic double derivative on the, 433
dilaton-axion field, self-duality condition, 437
Dolbeault cohomology, 32, 398, 400
 – primitive forms in, 798
Dolgachev numbers, 723
Dubrovin structure, 624, 625
Dubrovin’s formalism, 619
Enriques surface, 716
equivariant K-theory
 – orbifold Euler characteristic in, 137, 139
exoflop, 279
Fano threefold, 733, 735
Fano varieties, 452, 453, 605, 608, 622, 629
 – definition, 610
 – are not convex, 614
 – Gromov–Witten classes for, 604
 – quantum cohomology for, 629
 – toric, 81, 712, 728, 729
 – , – Gorenstein, 81, 82, 84, 89, 90, 94, 119, 783
 – WDVV equations for, 604
Fayet-Iliopoulou parameters, 200
Fayet-Iliopoulou term, 60, 151, 152, 158, 159, 173, 176, 189, 194, 200
Fermat superpotential
 – definition, 101
Fermi zero modes, 31
Feynman integrals
 – monodromy group of, 292, 328
Fock vacuum, 31
Frobenius algebra
 – definition, 620
Fubini–Study Kähler potential, 792, 793
Fuchsian equation, 319
Fuchsian points, 319
Fujita index, 444, 446, 449, 450
Gabrielov numbers, 723
gaugino field, 347
Gauss–Bonnet formula, 560
Gauss–Manin
Glossary

- derivative, 762
- differential system, 313, 548, 574
Gauss-Manin connection, 288, 312, 460, 555, 759–762, 776
- and extended mirror map, 760
- and Picard–Fuchs equations, 460
Gauss-Manin system, 311
general relativity, 220
Gepner models, 70, 91, 199, 206, 218, 585, 594, 703, 712
Gepner point, 72
- quantum and geometric symmetries at, 97
Gepner’s conjecture, 57
Gorenstein cone, 83
- definition, 82, 83
- of index r, 83, 84
- of index 1, 83
- reflexive, 81, 82, 84, 85, 90, 91, 93
- - definition, 83
- - associated with a complete intersection, 93
- - completely split, the dual cone not split, 89
- - duality for, 91, 94
- - giving rise to a family of complete intersections, 88
- - not split, 88
- - of index 2, 88
- - of index r, 87
- reflexive, completely split
- - definition, 88
- reflexive, split
- - definition, 88
Gorenstein singularities, 81, 83, 147, 571, 578, 581
- canonical, 245, 246
- rational, 385
- toric, 83
Grassmannian, 539, 735, 740
- as a target space of a σ-model, 194
- hypersurfaces in, 187, 194–196
- of k-planes in complex n-space, 195
- realized as a holomorphic quotient, 195
- super, 791
Grassmannian algebra, 18, 20, 26
Grassmannian integral, 19, 20, 23, 26
Grauert’s Theorem, 412
gravitino field, 347
Griffiths-Dwork-Katz reduction method, 554
Gromov–Witten 1-point function, 385
Gromov–Witten 3-point function, 385
Gromov–Witten classes, 602, 604, 606–608, 610, 611, 613, 615, 632, 634, 645, 649
- definition, 607
- basic, 607
- cusp components of, 615
- description, 605
- for product of P1, 649
- for projective spaces, 606
- recursive calculation of, 605
- restricted system of, 615
- tree level, 605
- - codimension zero, 649
- - motivic system of, 614
- tree level system of, 610, 615, 616, 621, 630
- - definition, 607
- - quantum cohomology associated with, 624
- - restricted, 616
- zero–codimensional of genus zero, 605
Gromov–Witten invariants, 774
Gromov–Witten numbers
- basic, 629
Gromov–Witten theories, 638
Grothendieck residue, 312
Grothendieck tautological sheaf, 86
Grothendieck-Riemann-Roch formula, 675
GSO projection, 581, 582
- generalized, 56, 101
Hermite theorem, 656
heterotic string, 428, 443, 585
- compactifications of, 123, 286, 290, 543, 544, 653, 785
- , - toroidal, 705, 709
- moduli space of, 451
- theory
- , - vacua of, 96
- vacua of, 286
Hilbert polynomials, 713, 732, 733
Hilbert schemes, 140, 146, 672, 673, 739, 775, 779
- of rational curves of a given degree, 740
Hilbert spaces, 16, 18, 22, 25, 30, 31, 55, 138, 429, 758, 759
Hirzebruch–Riemann–Roch theorem, 445–448
Hirzebruch-Jung
- singularity, 92
- string, 379
Hodge structures, 81, 87, 681, 682, 686, 705, 799, 800
- mixed, 468, 684, 685, 693
- , - category of, 687
- , - Hodge-Tate, 681
- , - Hodge-Tate, variation of, 689
- , - Hodge-Tate, definition, 687
- , - motivic, 693
- , - variation of, 681, 684, 688
- polarized
- , - variation of, 681, 684, 695
- , - variation of, which is a nilpotent orbit, 684
- variation of, 82, 460, 548, 604, 606, 629, 639, 681, 761, 794
Hodge–Riemann bilinear relations, 705, 746, 749
holomorphic anomaly, 585, 586, 592, 593, 666, 670
holonomy group, 218, 360, 364, 416, 423, 459, 709, 710, 714
- of Zamolodchikov metric, 701
hypergeometric equations
- generalized, 319
hyperkähler
- Calabi–Yau manifolds, 438
- condition, 437
- metric, 699
- quotient, 186
- space, 432
- structure, 439
instanton
- point-like, 182, 183
instanton approximation, 660
instanton contributions, 205
- negative, 540
- to correlation functions, 471
- to the three-point functions, 773
instanton corrections, 223, 281, 297, 326, 465, 558, 561, 610
- corresponding to rational curves, 362
- in genus zero, 659
- of the \(\sigma \)-model, 291
- to Yukawa couplings, 739
instanton expansion, 483–485, 527, 740, 741
- in terms of rational curves, 756, 758
- in the large Kähler structure limit, 593
- of A-model correlation functions, 774
- of the linear \(\sigma \)-model, 181
- of Yukawa couplings, 776
instanton moduli space, 182
- dimension of, 183
Glossary

instanton numbers, 170, 178, 179, 182
- integer, 559
- the standard quantization of, 179
instanton sums, 170, 175, 203–205
instanton terms in the expansion of the
Yukawa couplings, 537
instantons
- “universal degenerate instanton”,
9, 674
- axionic
- - - definition, 437
- - - four-dimensional, 429
- degenerate, 537, 538, 671, 672, 674
- - - definition, 536
- - - moduli of, 671–673
- degree one instantons, 659
- delta–function instantons, 659
- genus one, 488, 532, 533, 535
- - - instanton numbers for, 485
- genus zero, 483, 533, 659
- holomorphic, 656
- in continuous families, 484, 529, 540
- moduli of, 676
- of the σ-model, 180
- primitive, 657, 658
- rational, 659
- small-scale, appearing in the A-
model, 262
- smooth at a fundamental level, 180
- world-sheet instantons, 325
- - - a. k. a. rational curves, 740
intersection numbers, instanton-corrected, 593
Ising model, 53
isomonodromic deformations
- governed by Painlevé VI equa-
tion, 629
- of the \mathcal{D}–module, 629
K3 surfaces, 257, 389, 391, 661, 699, 701–703, 705, 707, 710–712
- $\mathcal{N}=(4,4)$ theory on, 706
- Arnold’s strange duality for, 708
- CFT on, 698, 701, 707
- compactifications of heterotic
string, 705
- cone of curves of, 395
- mirror map for, 708
- mirror symmetry for, 698–700, 790
- moduli of, 698, 699, 701, 706
- moduli of $\mathcal{N}=(2,2)$ theories on, 706
- moduli of Einstein metrics on, 702
- Mori cone for, 394
- pencil of, 538, 539
- period domain for, 713
- quartic, 486
- string theory on, 698
- - - moduli space of, 699, 703
- with involution, 713, 716, 718–
720, 724, 725, 727, 730, 732, 734
- - - Nikulin’s classification of, 716
- with Picard number at least 3, 394
- with Ricci-flat metric, 702
Kähler class, 63, 73, 164, 171, 188,
190, 194, 229, 346, 464, 488,
655, 660, 708
- “small and positive” value of, 64
- analytic continuation of Calabi–
Yau to negative Kähler class, 165
- Calabi–Yau σ-model with a par-
ticular Kähler class, 63
- complexified, 651
- - - definition, 653
deformations of, 97, 287, 290
- negative
 - , - analytic continuation to, 63
- union of (Kähler cone), 384
- untwisted modulus, 290
- definition, 46, 384
- a potential blowing-down map associated to, 471
- common walls of, 220
- complexified, 219, 221, 222, 463, 751, 752
- dependence on deformations of the complex structure, 384
- on Calabi–Yau threefolds, 395
- the boundary of, 377
Kahler forms, 251, 273, 545, 546, 599
- in an orbifold sense, 255
- moduli space of, 362
- , - (a Kähler cone), 361
- of the projective spaces, 544
- on K3 surfaces, 699, 701
- the restricted basis of, 548
Kahler manifolds, 29, 30, 42, 80, 95, 192, 230, 274, 440, 443, 502
- admitting a Ricci-flat metric, 29
- intersection forms on, 420
- of restricted type, 742
- Ricci-flat, 657
- sigma-models on, 651
- special, 345, 347, 739, 742, 748
- , - definition, 287, 348
- specified by its Kähler potential, 432
- supersymmetric quantum mechanics on, 31
Kahler moduli, 47, 48, 61, 72, 99, 227, 228, 231, 232, 234–236, 251, 259–261, 269, 272, 472, 504, 538, 552, 586, 661, 663, 743, 751, 760
- asymmetry between complex and Kähler moduli, 272
- at the infrared fixed point, 61
- augment it by concatenating other regions, 47
- cells of, 261
- compactification of, 552
- complexified, 221, 254, 261, 262, 708
- coordinate on, 752, 760
- enlarged, 49, 97, 220–223, 272, 281, 282
- , - definition, 48
- , - consisting of 100 distinct regions, 221
- , - fully enlarged, 224
- , - isomorphic to the complex structure moduli of its mirror, 117
- , - partially enlarged, 225, 235, 254, 272
- , - regions in, 222, 282
- naïve coordinates on, 232
- of the torus, 655, 662
- on a toric variety, 273
- partially enlarged, compactification of, 254
- regions in, 282
- singular points in, 235
- theories represented by points in, 219
- traditional, 281
- walls in, 260
- walls of
 - , - flopping walls, 232
Kahler moduli fields, 543
Kahler potential, 58, 98, 290, 291, 304, 309, 310, 312, 313, 345, 348–
Glossary

350, 432, 433, 439, 533, 553, 566, 742, 743
- non-holomorphic differential equation for, 287
- associated with the flat metric, 126
- expressed in terms of holomorphic sections, 348
- for Weil–Petersson metric, 557
- having a holomorphic prepotential, 742
- perturbations coming from, 98
- renormalization of, 125
- written in terms of holomorphic CCWZ-type coset representatives, 304

Kahler structure deformations, 544, 548
Kahler–Hodge manifolds, 345
- definition, 346
Kaluza–Klein theory, 220
Killing symmetries, associated with non-trivial dilaton fields, 428
Kleinian singularities, 139, 404
Kodaira dimension, 395, 413
Kodaira singularities, 724, 737
Kodaira–Spencer theory, 709, 746
Kummer relations among hypergeometric functions, 316
Kuranishi space, 411, 413
- dimension of, 410
- singular, 410
- versal, 410

Landau–Ginzburg
- conformal models, 281
- couplings, 292, 312
- formalism
 - , , N=2, 98
- orbifold conformal model, 63
- orbifold phase, 97
- orbifold point, 62
- orbifold region, 64–66
- orbifold sector, 63
- phase, 107, 109, 114, 213
- point in the Kähler moduli, 49
- potentials, 103
 - , , for supersymmetric field theory, 581
- region, 63
- superpotential, 286
- vacua, 383

Landau–Ginzburg models, 62, 125, 151, 169, 171, 172, 174, 180, 191, 198, 199, 213, 265, 275, 594
- (2, 2) compactifications in, 123
- N=2, 117
- “equivalence” with Calabi–Yau, 171
- conformal, 281
- conformally invariant, 57, 152
- correspondence with σ-model, 170
- correspondence with Calabi–Yau, 152, 162, 176, 187, 276
- flowing to the minimal models, 124
- gauged, 152, 191, 193
 - , , at low energies, 191, 195
 - , , description, 191
 - , , with non-abelian gauge group, 194
- gauged phase, 196, 197
- Hodge diamonds for, 789
- hybrids with sigma-models, 193
- interpolating from Calabi–Yau, 171
- mirror pairs of, 129
- obtained by taking products, 125
- of Fermat type, 132
- orbifold constructions, 123
- ordinary (ungauged), 192
- point, 281
- potentials, 133
- symmetry groups, 130
- the compact part, 276
- topological, 288
- transition from Calabi–Yau, 215
- with isomorphic groups of phase symmetries, 127
Landau–Ginzburg orbifolds, 62, 63, 65, 96, 97, 100, 104, 106, 109, 114, 115, 123–125, 127, 128, 130, 165, 189, 191, 279, 786, 800
- \((c, c)\) ring for, 798
- \(N=2\), 117
- \(\ldots\), – classification, 99
- **definition**, 164
- as \(\sigma\)-models on supermanifolds, 786
- at low energies, 199
- correspondence with non-linear \(\sigma\)-models, 785
- corresponding to supermanifolds, 793, 794, 804
- dependence on the complex structure moduli, 800
- Hodge numbers, 798
- in enlarged moduli space, 98
- Landau–Ginzburg potential for, 114
- large radius limit, 98
- mirror symmetry for, 128, 131, 132
- mirrors for, 790
- phases, 99
- sigma-model interpretation, 786, 788, 793, 796, 804
- superpotential of, 187
- twisted sectors of
 - \(\ldots\), – action of quantum symmetries, 99
Landau–Ginzburg point, 72
Landau–Ginzburg theory, 41, 64, 224, 234, 265, 275–280, 372, 443, 453, 788, 789, 794, 799, 802, 804
- **definition**, 49, 164
- as a low energy theory, 180
- as analytic continuation of Calabi–Yau theory to negative Kähler class, 165
- at the conformal fixed point, 124
- conformal, 789
- connection with \(\sigma\)-model, 59
- five twisted sectors in, 803
- fluctuations
 - \(\ldots\), – are massless, 276
- gauged, 65, 109
- hybrids with \(\sigma\)-models, 48
- Lagrangian for, 49
- mirror of, 374
- monomials, 374
- of a single chiral superfield, 57
- of the mirror, 380
- orbifold, 61, 63, 66, 226
- \(\ldots\), – conformally invariant, 64
- \(\ldots\), – of Fermat type, 50
- orbifolded, 49, 77
- quantum symmetry of, 62
- superpotential, 64, 85, 310, 374, 375, 797
- superpotentials, 91
- topological, 290, 308, 312
- \(\ldots\), – three-point correlators in, 290
- twist fields in, 62
- \(\text{V-bundle}\), 279, 280
- with more than 5 superfields, 113
Landau–Ginzburg vacua, 123
Laplace–Beltrami operator, 138
Leray spectral sequence, 718
Levi–Civita
- connections, 746
- \(\ldots\), – and curvatures, formulae for, 346
- tensor, 196
log terminal varieties, 386
loop space of an orbifold, 137
Lorentz group, 34
Lorentz spin zero, 175
Lorentz transformations
 – defined using the modified stress
 tensor, 175
 – local, 350
Lorentzian signature, 174

Majorana-Weyl fermions, 31
Malliavin calculus, 137
massive fields, 180
McDuff’s transversality theorem, 540
Milnor fiber of the singularity, 723
Minkowski space-time, 29, 428, 739
mirror symmetry, 15, 38, 40, 49, 73,
 75, 80, 94, 97, 99, 107, 117,
 119, 123–125, 131, 153, 219–
 222, 225–227, 235–237, 258–
 260, 262, 270, 282, 290, 359,
 375, 393, 429, 444, 447, 452,
 457, 458, 480, 483, 484, 498,
 531, 533, 543, 593, 638, 661,
 695, 698, 714, 740, 741, 752,
 758, 759, 761, 773, 776, 786,
 796, 800, 806
 – A∞–algebras in, 650
 – a property of two-dimensional
 N=2 quantum field theory, 124
 – abelian, 157
 – acting by reversing the sign of
 U(1) charge, 128
 – an inherent two-dimensional fea-
 ture, 117, 124
 – applications of, 75, 77, 457, 651,
 751
 – applying elliptic genera to, 124
 – asymptotic, 261
 – between Landau–Ginzburg orb-
 ifolds, 131
 – between Landau–Ginzburgs, 125
 – constricting via orbifolding, 502
 – correlation functions in, 37
 – criterion for, 128, 130
 – discovery of, 443
 – for N=2 minimal models, 117
 – for Calabi–Yau complete intersec-
 tions, 94
 – for Calabi–Yau hypersurfaces, 453
 – , – in toric varieties, 601
 – for families of Calabi–Yau com-
 plete intersections, 90
 – for Fermat quintic, 97, 662
 – for higher dimensions, 740, 750,
 776
 – for K3 surfaces, 698–700, 712,
 790
 – , – algebraic, 707
 – for Landau–Ginzburg orbifolds,
 132
 – for super-varieties, 785, 805
 – for toric hypersurfaces, 502, 504,
 541
 – generalizations of, 99
 – interchanging complex and Kähler
 moduli, 223, 234, 260, 282,
 400
 – mathematical formulation of, 80
 – on the language of sigma-models,
 96
 – predictions of, 457, 480, 559,
 751
 – quantum, 445
 – rigorously proven, 100, 132
 – , – for N=2 minimal models, 98
 – the statement of, 786
 – topology change, indications of,
 172, 200
 – toric methods in, 259
 – turning chiral multiplets into
 twisted chiral multiplets, 157
 – using it to calculate the number
 of elliptic curves, 385

Miura transformation, 302
monodromy
 – around the conifold
 – , – computations of, 517
 – around the divisors in the compactification of the moduli space, 498
 – computation by the methods of Deligne, 500
 – Jordan form of, 501
 – maximally unipotent, 466, 468–470, 477, 555, 559, 561, 593, 766, 768
 – of the periods, 458, 466
 – projective representation of, 317
 – quasi-unipotent, 683
 – relations on instanton numbers, 531
 – symplectic integral representations, 594
 – the large complex structure limit, 520
 – trivial, 578
 – unipotent, 500
monodromy action, 548, 550, 766
monodromy group
 – braid group B_5 as the, 336, 343
 – of Feynman integrals, 292, 328
 – of periods, 344, 474
 – of Picard–Fuchs equations, 286, 290, 313, 314, 321, 326
 – , – is a subgroup of the modular group, 317
 – of the periods, 343
 – Zariski dense, 694
monodromy matrix, 315, 316, 319, 523, 555, 561
monodromy transformations, 484
 – of the period vector, 484
monoidal category, 640
Mori cone, 392, 553, 560, 570, 572, 573, 577, 593, 595
 – for K3 surfaces, 394

multiple cover formula, 477, 778
 – for A-model, 477

nef cone, 385–387, 389, 391–394
 – definition, 384
 – boundary of, 385, 387, 389
 – for minimal Calabi–Yau, 392
nef divisor, 391, 392, 411, 488
nef partition, 107, 108
 – definition, 107
negative chirality spinor field, 208
Neveu-Schwarz sector, 797
Nielsen-Olesen abelian vortex line, 179
non-chiral group action, 70

orbifold
 – E-orbifold, 165
 – \mathbb{Z}_n orbifold, 213
 – definition, 276, 360
 – at its large radius limit, 375, 377
 – blown-up, 371
 – , – superstring target space, 359
 – Calabi–Yau
 – , – definition, 360
 – chiral twist-fields in an, 371
 – compactification, 278
 – conformal model
 (Landau–Ginzburg), 63
 – history of the term, 360
 – in string theory, 282
 – is equivalent to theory with a finite gauge group (in QFT), 165
 – , – as σ-models on supermanifolds, 786
 – , – at low energies, 199
 – , – Hodge numbers, 798
Glossary

- mirror symmetry for, 128, 131
- number of \((±1, 1)\) states, 99
- possessing Kähler forms contributed from the twisted sectors, 790
- rigid, 790
- sigma-model interpretation of, 786
- twisted sectors of, 99
- Landau–Ginzburg, \(N=2\)
- classification of, 99
- Landau–Ginzburg, \(N=2\), 97
- maximally resolved
- \textbf{definition}, 361
- mirror symmetry for, 92
- moduli space of, 277, 353
- nature of (in string theory), 219
- of homogeneous projective spaces, 804
- of Landau–Ginzburg theories, 50, 61
- of minimal models, 50, 124
- tensor product of, 57
- of the \(O\)-theory, 421
- of the \(O\)-theory (is the \(F\)-theory), 421
- same as a smooth stack, 614
- singularities, 48
- string theory on, 359, 361
- toroidal, 360, 661
- rigid, 790
- vector bundle analog of \((V\text{-bundle})\), 191
- with superpotential, 189

orbifold limits
- of Einstein metrics on K3, 701

orbifold metrics, 702

orbifold model
- field configurations in, 123

orbifold phase, 363

orbifold point, 361, 362, 377, 378
- in the moduli space, 379, 701
- Landau–Ginzburg, 62
- minimal model orbifold point, 72

orbifold region, 222, 363

orbifold singularities, 199, 221, 232

orbifold theory, 222, 227

orbifolding, 52, 53, 56, 70, 73, 123, 799
- \textbf{definition}, 44
- by quantum symmetry, 67, 68
- by the diagonal phase group, 789
- construction of mirror symmetry by, 502
- does not change the central charge of CFT, 55
- in CFT, 66
- modulo finite symmetry group, 91
- on \(N=2\) minimal models, 65
- varieties related by, 259

orbifoldisation
- with respect to the group, 582

Painlevé equation, 629

Painlevé VI equation, obtained from Schlesinger equation, 629

Peccel-Quinn symmetries, 559, 561

Pfaffian system, 555

Picard group, 386, 393–395, 405, 449, 571, 713, 733, 735, 736

Picard number, 736

552, 553, 573, 574, 576, 580, 587, 593, 601, 743, 753, 768

- **definition**, 375, 748
- and generalized hypergeometric functions, 461
- as generalized hypergeometric equations, 754
- asymptotic behaviour at the singular locus, 593
- covariant, 350
- deriving, 460, 545, 547, 554, 741
- , by Griffiths-Dwork-Katz reduction, 553
- , for general Calabi-Yau d-fold, 287
- , from Gauss-Manin connection, 460
- , obtained from toric data, 548
- , via periods, 461
- equivalent to Gauss-Manin, 548
- example of, 287
- for a Calabi-Yau threefold, 287, 744
- for Landau-Ginzburg orbifolds, 800
- for one variable, 312
- for periods, 318, 330
- fourth order, 315
- holomorphic, 299
- , in relation to special geometry, 290
- in special geometry, 288, 289
- , identical to three-point correlators, 290
- leading coefficients
- , deriving holomorphic Yukawa couplings from, 292
- linear system of, 345
- matrix form of, 292
- monodromy group of, 290, 317, 321
- monodromy properties, 313, 314, 321, 326
- non-holomorphic, 305
- restricted, 538
- singular, 330
- singularities of, 375, 553, 554
- , calculation, 553
- solutions, 345, 375, 508, 558, 578
- , expressing Yukawa coupling with, 559
- , general, 375
- , local, 461
- , logarithmic, 594
- special geometry for, 313
- structure of, 292
- systems
- , singular, 306
- the periods of the holomorphic three-form, 308
- third- and second-order, 580
- used to compute Yukawa coupling, 543

Picard-Fuchs identities
- second order, 306

Picard-Fuchs operators

- **definition**, 460

Picard-Lefschetz discontinuity operators, 339

Picard-Griffiths-Dwork-Katz relations, 332, 345

Picard-Fuchs operators

- in special coordinates, 558

Pochhammer symbol, 754

Poincare duality, 205, 251, 468, 615, 622, 625, 638, 649, 760, 773

- over integers, 474

Poincare polynomial, 125, 127

- **definition**, 127
- generalized, 128
- restricted, 128, 130

Poincare residue, 798, 799

prepotential, 291, 557
QCD, 451, 657, 677
 - N=2, 125, 224
 - , in two dimensions, 651
 - and supersymmetric quantum mechanics, 16
 - associated with string theory, 15
 - Calabi–Yau/Landau–Ginzburg correspondence, 187
 - chiral rings of, 32
 - content
 - , Green’s functions of, 34
 - content of, 34
 - correlation functions, 35, 420
 - nonlinear sigma model QFT
 - , on a Riemannian manifold, 16
 - nonzero energy states of, 30
 - perturbation theory of, 260
 - restrictions placed by consistency of string theory, 29
 - supersymmetric, 30
 - topological, 458, 459, 604
 - topological invariants in QFT, 37
 - two-dimensional, 28, 29, 457
 - , supersymmetric, 30
quantum duality map, 415
quantum mechanical conformal invar-
 iance, 225
quantum symmetries
 - pertaining to the instanton num-
 bers, 484
quasi-Kähler potential, 436, 437
 - definition, 430
 - satisfying the Laplace equation, 436
quaternionic symmetric space, 701
Ramanujan class, 615
Ramond charges, 653
Ramond ground states, 32, 51, 653
Ramond sector, 31, 51, 127, 128, 445, 585, 652
 - supersymmetric, 445, 652
Ramond states, 51
restricted holonomy, 425, 426
Ricci tensor, 29, 432, 434
Ricci-flat manifolds
 - with one isometry, 440
Ricci-flat metric, 29, 42, 462, 792
 - a. k. a. Calabi–Yau metric, 387
 - Kähler, 557
 - Kähler, 46, 438, 657, 714
 - on hyperkähler spaces, 432
 - on the K3 surface, 701, 702
 - Yau’s theorem, 228
Ricci-flat space
 - Kähler, 428
 - , four-dimensional, non-compact, 429
Riemann surface, 165, 175, 176, 179, 417, 438, 795
 - performing path integrals on, 165
Riemann tensor, 439, 742, 748, 749
 - self-dual, 432
Riemann–Roch theorem, 386, 389, 390, 393, 611, 781
Riemann-Hilbert problem
 - for reduced monodromy, 550
 - the data, 594
Schlessinger equation, 629
Schoen’s resolutions, 731
Schouten bracket, 397, 398
 - definition, 396
 - properties, 397
Schouten Lie algebra, 399, 400
 - definition, 397
Schwarzian coordinates, 296
Schwarzian derivative, 293
Schwarzian differential equation, 296
sigma-models, 36, 63, 99, 164, 170, 180, 181, 186, 191, 194, 195, 202, 211, 213, 214, 653, 786,
- moduli space of, 182
- non-linear, 43–45, 48, 49, 104, 739, 785
 - , - Calabi–Yau, 172
 - , - conformally invariant, 55, 61, 64
 - , - on a Riemannian manifold, 16
 - , - string theory associated to, 33
 - , - with Calabi–Yau target spaces, 55, 57
 - , - with target space K_6, 30
- nonlinear, 225
- on Kähler manifolds, 651
- on supermanifolds, 786
- perturbation theory, 42
- quantum corrections to, 165
- superconformal, 752
 - , - non-linear, 785
 - , - nonlinear, 220
- supersymmetric, 653
- topological, 481, 650, 655, 660, 794

singularities
 - Kleinian, 139, 404
 - Kodaira, 724, 737
 - terminal, 404
 - , - definition, 278
special manifolds, 345, 347, 739, 742, 748
 - definition, 287, 348

Stenley-Reisner ideal, 269
string equivalent manifolds, 40
super-Ricci flat metric, 792–794, 805
 - existence, 793
 - resolution of singularities, 804
super-Ricci tensor, 792, 793, 805
 - vanishing
 - , - as a condition for conformal invariance, 805
superconformal algebra, 40, 228, 233,
Glossary

270
- $N=(4,4)$, 701
- $N=2$, 32, 40, 41, 161
- , , description, 41
- , , relation with Calabi–Yau condition, 42

superconformal field theories, 91, 225, 286, 287, 292, 581, 582, 585, 651, 653
- $N=2$, 39, 41, 42, 45, 80, 85, 96, 97, 123, 310, 428, 557, 652, 739
- , , elliptic genera, 133
- , , mirror involution in, 81
- , , moduli spaces of, 46, 50, 56, 286, 308
- , , with integral $U(1)$ charges in the Neveu-Schwarz sector, 797
- $N=(2,2)$, 359, 361, 362
- corresponding to 4-dimensional black-hole backgrounds, 429
- exactly solvable, 581
- mirror involution in, 92
- moduli spaces of, 481
- rational, 545, 581

superconformal field theories, a. k. a. SCFT, 286

superconformal ghosts
- left and right bosonized, 34

superconformal invariance, 42

superconformal model
- $N=2$, 794

superconformal models, 94
- minimal
- , , of Gepner, 91

superconformal primary fields, 50, 51

superconformal symmetry, 431
- $N=2$, 415
- $N=2$ and $N=4$, 440
- $N=2$ or $N=4$, 429
- $N=4$, 437–440

supermanifolds
- DeWitt, 791
- split, 791

Teichmüller space for Einstein metrics on K3, 701

Theorem of the Cone
- for log terminal varieties, 386
- three-point functions, 36, 468, 477, 741, 754, 757, 758, 762, 764, 766, 767, 773, 779, 782
- computations of, 465
- for A-model, 467
- for B-model, 467, 754, 761
- instanton contributions to, 773
- instanton expansions, 758
- Laurent expansion of, 466
- of the multiplet, 204
- on higher-dimensional Calabi–Yau spaces, 594
- poles, 466, 468
- topological terms in, 766
- writing all correlators in terms of, 756

Tian–Yau manifolds, 544, 545, 566, 591

topological field theory, 173, 175, 176, 401, 403, 478, 481, 527, 537, 539, 650, 742, 756
- $N=2$, 286
- A-model, 751
- B-model, 750
- axioms of, 594
- defined by BRST, 557
- mirror symmetry in terms of, 751
- topological correlation functions, 175

Torelli theorem, 87, 95, 460, 705, 706

toric divisors, 252, 253, 500

toric hypersurface, 193
- definition, 193

toric hypersurfaces, 473, 475, 504

toric morphism, 86
toric singularities
- Gorenstein, 83

Glossary
- definition, 103, 237, 364
- 4-fold, 113, 246, 280
- affine, 104
- as mirror supermanifolds, 800
- as torus quotients, 109
- associated to a fan, 115, 247, 254, 365
- associated with a fan, 104, 106, 107, 239, 241, 251
- Calabi–Yau complete intersections in, 82
- Calabi–Yau hypersurfaces in, 94, 119, 251, 259, 541, 601, 737
- compact, 247
- compactifications of, 254
- complete intersections in, 81, 85, 92, 93, 96, 98, 107, 459, 469, 576, 594, 601
- complete intersections of hypersurfaces in, 451
- description of the Hodge structure, 799
- intersections of hypersurfaces in, 197
- Kähler cone, 273, 572
- key facts about, 103
- methods of Landau-Ginzburg model, 117
- mirror families of hypersurfaces in, 98
- mirror pairs construction, 80, 81, 111, 258
- mirror symmetry in, 481
- not admitting Kähler metric, 274
- orbifold, 116
- quantum cohomology rings, 478
- quantum cohomology rings for, 636
- seven-dimensional, 115
- singular, 243, 244
- singularities of, 113, 245
- canonical Gorenstein, 245
- smooth, 193, 252, 255
- subvarieties in, 247
- three-dimensional, 246, 247
- toric blowups of, 494, 495
- toric description of the mirror pair, 551, 571
- toric divisors, 500
- toric hypersurfaces, 502
- toric moduli space, 469, 504
- non-toric boundary points, 470
- toric boundary points, 470
- toric resolution, 137, 141, 142, 144, 245, 264, 369, 373, 553
- minimal, 143
- weighted projective space as, 104, 105, 248, 263
- which are weighted projective spaces, 248
twisted chiral condition, 157

unorbifolding, 67, 68, 71

Van Kampen relations, 329, 330, 333, 334, 345, 357

Verma module, 51

Viehweg theorem, 459

Weil–Petersson metric, 414, 545, 557, 571, 586, 702

Wess-Zumino gauge, 155, 207, 210

Wick rotations, 16, 28, 177

Wilson lines, breaking the E_6 gauge group by, 544

Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations, 594, 606, 621, 636

– a. k. a. “associativity” relations, 604

– defining special geometry, 594

– equivalence to tree level CohFTs, 646

world-sheet, 47, 98, 177, 200, 215, 281, 655, 659

– definition, 28

– coordinates on, 28

– Euclidean, 174

– finite volume, 165, 170, 171

– genus zero, 181

– in the Calabi–Yau threefold, 325

– infinite volume, 165, 171

– instantons

– , – definition, 325

– , – a. k. a. rational curves, 740

– Kač-Moody symmetries, 281

– metric, 29, 158

– supersymmetry, 151, 152, 281, 361

– , – enlarged $N=4$, 432

– supersymmetry operator Q, 31

– two-dimensional, 174

WZW model, 50, 133

– Verlinde formula for, 153

– d-point, 754

– by a single holomorphic function, 743

– classical contributions to, 205, 484

– classical part of, 529

– computation of

– , – for quintic, 310

– computations, 485

– computations of, 290, 537, 802

– contribution of a given rational curve to, 297

– covariantly constant, 289, 290, 296, 299, 352

– effects of the flop on, 537

– expansion of, 537

– expansions of, in terms of instantons of genus zero, 483

– for d-point functions, 770

– for low energy theory, 795, 796

– full moduli dependence of, 566

– generalized, 741

– holomorphic, 292

– in inhomogeneous special coordinates, 557

– in special coordinates, 300, 352

– in the higher-dimensional case, 740

– instanton corrected, 739

– instanton expansion of, 776

– instanton-corrected, 543–545, 553, 555, 559–561, 568, 581, 739

– , – expansion, 593
- large radius limit of, 236
- leading terms of, 529
- low energy, 175, 203, 215
- of chiral superfields, 211
- of massless multiplets, 203
- of A-model, 760
- of B-model, 760
- one-dimensional, 294
- periodic, 291, 326
- predictions, 449
- predictions of, 99
- predictions of, for rational and elliptic curves, 534
- series expansions of, 773
- singularities, 554
- three-point functions, 204
- topological values for, 496
- transformation properties of, 558
- unnormalized, 554
- unquantized, 385

Yukawa couplings
- instanton-corrected, 802

Z-orbifold, 360, 379
- construction, 359
- toroidal, 360

Zamolodchikov metric, 653, 661, 702, 710
- classical, 664
- coincides with Weil-Petersson, 702
- holonomy of, 701
- Kähler function for, 653
- left-invariant metric, 702
- non-flatness, 701
- on the moduli space, 652

Zariski-Lipman Conjecture, 388
zero instanton sector, 656, 660
Index

Aharony, O., 133
Alvarez-Gaumé, L., 440
Antoniadis, I., 453, 667, 677
Arnold, V. I., 120, 134, 357, 703, 708, 712, 713, 724, 729
Arnowitt, R., 677, 783
Artin, M., 478
Atiyah, M. F., 139, 146, 806
Audin, M., 218, 284
Ballico, E., 480, 783
Balog, J., 356
Barbieri, R., 356
Barbon, J. L. F., 426
Bardakci, K., 426
Bardeen, W. A., 601
Batyrev, V. V., 94, 95, 105–107, 114, 119, 134, 193, 218, 259, 270, 283, 284, 383, 453, 478, 502, 541, 594, 601, 636, 712, 713, 728, 737, 783, 806
Beauville, A., 284, 711, 807
Beilinson, A., 649
Bertin, J., 137, 144, 146
Billera, L., 284, 602
Blok, B., 354, 356, 541
Bodner, M., 355
Bogomolov, F. A., 283, 404, 459, 460, 478
Borcea, C., 710, 711, 737, 738
Borel, A., 710
Borisov, L. A., 94, 95, 107, 114, 119, 453, 602, 783, 806
Bott, R., 783, 806
Bradlow, S., 217
Cadavid, A. C., 355, 541, 783
Callan, C., 441
Cappelli, A., 603
Castellani, L., 355, 677
Cattani, E., 479, 681, 697
Ceresole, A., 355–357, 479, 541, 602, 783
Ciliberto, C., 395
Cordes, S., 603
Cox, D. A., 218, 284, 806
Cremmer, E., 355–357, 427, 783
D’Adda, A., 167, 217
D’Auria, R., 355–357, 479, 541, 602, 677, 783
Dale, A. M., 452, 600
Danilov, V. I., 85–87, 94, 146, 245
Daskopoulos, G., 217
Deligne, P., 468, 479, 500, 541, 602, 640, 693, 697
Derendinger, J.–P., 355, 677, 783
Derrick, E., 94, 357, 383, 452, 453, 603, 806, 807
DeWitt, B., 791, 806
Dijkgraaf, R., 354, 355, 441, 479, 594, 602, 606, 677, 711, 784

839
Dine, N., 38, 79, 218, 284, 356, 382, 784
Distler, J., 78, 216, 284, 382, 751, 783, 784
DiVecchia, P., 78, 217, 711
Di Francesco, P., 120, 133
Dold, A., 807
Dolgachev, I. V., 82, 708, 723, 738, 807
Douady, A., 413
Drinfel’d, V., 356
Dubrovin, B., 603, 605, 624, 625, 650
Duistermaat, J. J., 184, 193, 217
Ebeling, W., 724, 737
Echmann, B., 807
Eguchi, T., 217, 354, 602, 677, 709, 806
Elitzur, S., 441
Ellingsrud, G., 479, 539, 541, 740, 775, 783
Erler, J., 356
Esnault, H., 82, 94
Fateev, V. A., 78
Feher, L., 356
Fendley, P., 453, 676
Ferrara, S., 283, 355–357, 427, 479, 540, 541, 602, 677, 783
Filliman, P., 284, 602
Flohr, M., 452
Forgaš, P., 356
Forsyth, A., 356
Fradkin, E., 426, 441
Freund, P. G. O., 216
Frey, A., 452
Fridling, B. E., 426
Friedan, D., 78, 216, 354, 382, 441
Fujita, T., 444, 446, 449, 450, 453
Furlan, G., 119, 133, 283, 479, 782
Garcia-Prada, O., 217
Gasperini, M., 426
Gates, S. J., 216, 218, 441
Gava, E., 453, 677
Gawedski, K., 426
Gel’fand, I. M., 375, 383, 461, 479, 550, 602
Gel’fand, S. I., 383
Gepner, D., 56, 72, 78, 91, 94, 97, 120, 134, 199, 206, 218, 283, 354, 356, 440, 585, 594, 603, 703, 710, 712
Getzler, E., 606, 650
Ginsparg, P., 710, 806
Girardello, L., 216, 283, 354, 355, 602, 783, 806
Givental, A., 636
Giveon, A., 354, 356, 357, 426, 427, 441, 709
Grassi, A., 393, 394, 479
Grauert, H., 412, 413
Green, P. S., 79, 119, 134, 283, 284, 355, 479, 540, 600, 601, 677, 697, 710, 737
Griffiths, P. A., 313, 357, 460, 478, 554, 602, 677, 744, 745, 761, 784, 806, 807
Grisaru, M. T., 216
Gritsenko, V. A., 738
Gromov, M., 385, 477, 479, 602, 604–607, 613, 629, 650, 659, 677, 779, 784
Grothendieck, A., 86, 312, 405, 675, 678
Guillemin, V., 217, 283
Gusein-Zade, S. M., 120, 134
Hübsch, T., 117, 120, 133, 216–218, 283, 355–357, 394, 441, 478,
INDEX

541, 544, 600, 601, 710, 783, 807
Hübisch, T., 737
Hamidi, S., 805
Hareven, I., 426
Hartshorne, R., 204, 218, 413, 678
Henningson, M., 117, 119, 133, 134
Hijikata, H., 711
Hinnefeld, J., 452
Hironaka, H., 553
Hirzebruch, F., 92, 137, 146, 379, 472, 480
Hitchin, N. J., 217
Hosono, S., 120, 121, 284, 355, 383, 480, 540, 601–603, 667, 737
Huet, P., 356
Intriligator, K., 120, 128, 133, 354, 453, 676
Iskovskih, V. A., 735, 737
Itzykson, C., 356, 603, 636, 650
Jevicki, A., 426
Jungnickel, D., 356
Kachru, S., 120
Kalara, S., 603
Kampen, van, E. R., 329, 330, 333, 334, 345, 357
Kaplanovsky, V. S., 356, 452, 601, 602, 677, 783
Kapranov, M. M., 383, 479, 602, 650
Karhede, A., 217
Katizawa, Y., 603
Kato, A., 603
Kawai, T., 133
Kawamata, Y., 389, 394, 404, 413
Kazama, Y., 134
Kempt, G., 146
Khovanskiĭ, A. G., 85–87, 94
Khuri, R., 441
Kikawa, K., 120, 356, 441
Kikuchi, Y., 603
Kiritsis, E., 441, 442
Kirklin, K. H., 603
Klemm, A., 120, 121, 133, 284, 355, 383, 453, 480, 540, 542, 601–603, 677, 737, 783, 805
Knizhnik, V. G., 78, 283, 737
Kodaira, K., 383, 395, 413, 649, 677, 709, 724, 731, 737, 746
Kollár, 218, 283, 394, 395
Kontsevich, M., 477, 480, 602, 633, 650, 777, 784
Kostant, B., 356
Koszul, J. L., 397, 398, 403, 650, 744
Kounnas, C., 355, 356, 441, 442, 677, 783
Kreuzer, M., 119, 120, 133, 218, 453, 603
Kupianen, A., 426
Lahanas, D. V., 356
Landman, A., 480, 541
Landweber, P., 134, 217
Lauwers, P., 355, 602, 783
Lerche, W., 38, 78, 119, 134, 216, 283, 354–357, 382, 441, 479, 480, 540, 541, 602, 754, 782–784, 805, 807
Lian, B., 594
Libgober, A., 119, 284, 480, 538, 541
Lichnerowicz, A., 397, 403
Lindström, U, 217, 441
Liu, A–K, 805
Livorni, E. L., 395
Lozano, Y., 426
Lynker, M., 78, 120, 133, 283, 356, 441, 452, 479, 737, 782
Maas, J., 355, 356
Maassarani, Z., 355
Magnus, W., 357
Malkin, N., 356
Mandal, G., 441
Manin, Yu. I., 82, 477, 480, 602, 650, 784, 806
Markushevich, D., 137, 144, 146, 284, 382, 541
Martinec, E., 78, 119, 133, 216, 283, 354, 382, 441, 708, 709, 737, 806
Matsumoto, T., 710
McDuff, D., 480, 540, 542, 784
Miron, P. J., 603
Misra, S. P., 216
Miyaka, T., 710
Miyaoka, Y., 387–389, 395
Mohapatra, S., 603
Molera, J., 356
Muhammed, F., 218
Nagata, M., 710, 711
Nahm, W., 452
Namikawa, Y., 404, 413
Nanopoulos, D. V., 356
Narain, K. S., 453, 677, 709
Nemeschansky, D., 806
Newstead, P., 184, 217
Nijenhuis, A., 397, 403
Nikulin, V. V., 386, 395, 712, 713, 716, 718, 721–724, 730, 737, 738
Nilles, H. P., 356
Noether, M., 444
Nori, M. V., 94
O’Raifeartaigh, L., 356
Oberhettinger, F., 357
Oda, T., 94, 147, 284, 395, 480, 504, 541, 602, 711
Odake, S., 709
Oguiso, K., 389, 391, 395, 450, 452
Olshanetsky, M., 146, 284, 382, 541
Ooguri, H., 38, 121, 355, 383, 394, 449, 453, 478, 540, 601, 649, 677, 678, 709, 783
Ovrut, B., 356
Papadopoulos, G., 441
Parkes, L., 38, 79, 94, 119, 134, 284, 355, 383, 453, 479, 540, 601, 603, 677, 697, 737, 782, 806
Pasquinucci, A., 216, 354, 806
Perelomov, A., 146, 284, 382, 541
Persson, U., 737
Peterson, J., 711
Piatetskii-Shapiro, I., 711
Pilch, K., 134, 217
Pinkham, H., 708, 711, 723, 737
Plesser, M. R., 78, 94, 97, 120, 121, 124, 133, 146, 282, 283, 356, 382, 441, 452, 479, 481, 541, 603, 677, 710, 737, 782–784
Polyakov, A. M., 216
Ponzano, G., 356
Porrati, M., 356, 427
Rabinovici, E., 356, 426, 427, 441
Rapoport, M., 711
Regge, T., 356, 357, 479
Rey, S. J., 441
Roan, S-S., 95, 105, 120, 146, 147, 258, 259, 283, 298, 395, 541, 594, 737, 783
Rocek, M., 216, 217
Roo, de, M., 709
Ruan, Y., 481, 650
Saint-Donat, 146
Saito, M.-H., 711
INDEX

Sakai, N., 120, 356, 441
Salamon, D., 480
Salomonson, P., 217
Samadi, M., 709
Scheich, C., 603
Schellekens, A., 133, 134, 217
Scherk, J., 427
Schimmrigk, R., 78–82, 87, 95, 120, 133, 199, 218, 283, 356, 441, 452, 453, 479, 600, 601, 603, 710, 737, 782
Schlessinger, M., 413
Schmid, W., 481, 663, 677
Schmidt, M., 603
Schoen, C., 678, 731, 737
Schoutens, K., 441
Schwarz, J. H., 38, 134, 218, 354, 356, 427
Segal, G., 139, 146
Seiberg, N., 38, 79, 218, 284, 355, 356, 382, 602, 704, 709, 710, 784
Senda, I., 120, 356, 441
Sengupta, A., 441
Sevrin, A., 441
Shafarevich, I. R., 711
Shapere, A., 356, 441
Shenker, S., 354, 382
Shepherd-Barron, N. I., 395
Skarke, H., 119, 120, 133, 218, 453, 603
Smit, D.-J., 354, 355, 357, 541, 709, 784, 807
Smith, F. C., 784
Sokolov, V. V., 356
Sommervoll, D. E., 601, 603
Sommese, A. J., 395
Soriano, P., 357
Sotkov, G., 603
Speier, E. R., 356
Spence, B., 426
Srinivas, V., 94
Stanishkov, M., 603
Steenbrink, J., 807
Sterk, H., 395
Stora, R., 298
Strominger, A., 38, 78, 79, 133, 283, 284, 289, 354–356, 381, 427, 440, 441, 677, 709, 743, 783
Sturmfels, B., 284, 602
Tamvakis, K., 356
Taormina, A., 709
Teitelbaum, J., 119, 284, 480, 538, 541
Terasoma, T., 95
Thaddeus, M., 153, 216
Theisen, S., 120, 121, 284, 355, 356, 383, 480, 540, 542, 601–603, 677, 737, 783
Thurston, W. P., 360
Tian, G., 224, 231, 283, 404, 413, 459, 481, 544, 545, 566, 591, 601, 650, 783
Todorov, A., 283, 414, 459, 481, 594, 710, 711
Tseytlin, A., 426, 441
Ueno, K., 710, 807
van de Ven, A., 383, 709
Van Proyen, A., 357
Van Straten, D., 82, 94, 119, 284, 478, 541, 601
Varchenko, A. N., 120, 134, 354, 356, 357, 541
Veneziano, G., 356, 426
Verlinde, E., 153, 216, 217, 354, 355, 426, 441, 602, 711, 807
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verlinde, H</td>
<td>153, 354, 355, 441, 602, 711, 807</td>
</tr>
<tr>
<td>Viehweg, E.</td>
<td>283, 459, 481</td>
</tr>
<tr>
<td>Villasante, M.</td>
<td>357</td>
</tr>
<tr>
<td>Voisin, C.</td>
<td>481, 708, 711, 738</td>
</tr>
<tr>
<td>Voronov, A. A.</td>
<td>650, 805</td>
</tr>
<tr>
<td>Wadia, S.</td>
<td>441</td>
</tr>
<tr>
<td>Wen, X.-G.</td>
<td>38, 79, 218, 284, 382, 784, 807</td>
</tr>
<tr>
<td>Wentworth, R.</td>
<td>282</td>
</tr>
<tr>
<td>Wess, J.</td>
<td>155, 207, 210, 216, 217</td>
</tr>
<tr>
<td>Westwater, M. J.</td>
<td>356</td>
</tr>
<tr>
<td>Wilczek, F.</td>
<td>356</td>
</tr>
<tr>
<td>Wilczek, F./</td>
<td>356</td>
</tr>
<tr>
<td>Wilson, P. M. H.</td>
<td>61, 394, 395, 444, 449, 450, 452, 537, 541, 544</td>
</tr>
<tr>
<td>Wolfson, J. G.</td>
<td>677</td>
</tr>
<tr>
<td>Yamada, Y.</td>
<td>133</td>
</tr>
<tr>
<td>Yamasaki, M.</td>
<td>120, 356, 441</td>
</tr>
<tr>
<td>Yankielowicz, S.</td>
<td>120, 127, 133</td>
</tr>
<tr>
<td>Yau, S.-T.</td>
<td>38, 147, 217, 224, 228, 231, 283, 284, 383, 387, 395, 403, 413, 441, 479–481, 601–603, 650, 667, 697, 711, 737, 783, 784, 806</td>
</tr>
<tr>
<td>Yonemura, T.</td>
<td>737</td>
</tr>
<tr>
<td>Yoshida, M.</td>
<td>602</td>
</tr>
<tr>
<td>Yukie, A.</td>
<td>676</td>
</tr>
<tr>
<td>Zagier, D. B.</td>
<td>480</td>
</tr>
<tr>
<td>Zamolodchikov, A.B.</td>
<td>78, 652, 653, 661, 664, 701</td>
</tr>
</tbody>
</table>

Zariski, O., 345, 357, 388, 694, 695, 779
Zaslow, E., 382, 805, 806
Zelevinski, A. V., 383, 479, 602
Zheng, H. B., 78
Zuber, B., 356, 603
Zumino, B., 78, 440, 807
Zwirner, F., 677