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PREFACE 

Á year-long program on nonlinear conservation laws was organized by us at the 
Morningside Center of the Academic Sinica in Beijing during the academic year of 
1997. The aim was to introduce young researchers in China to the frontiers of an 
important branch of applied mathematics that has been expanding rapidly. The 
program consisted of mini-courses on various current topics, short lecture series, in-
vited talks, member seminars, and intensive working seminars. The emphasis was 
laid on theoretical analysis and applications. Important aspects, numerical methods 
for large scale discontinuous flows, were left for a future program. The program's 
success is partially reflected from the quality of this volume which consists of se-
lected lecture notes for the mini-courses. The topics covered in this volume include: 
theory of L1-well-posedness for System of conservation laws by A. Bressan, theory 
of compartness methods by G. Chen, mathematical modelling of semi-conductor 
devices by P. Degond, kinetic formulation of conservation laws by B. Perthame, 
theory of viscous conservation laws by Zhouping Xin, and mathematical theory of 
ideal incompressible fluid by Yuxi Zheng. The volume also includes a survey article 
by Zhouping Xin. 

The success of such an undertaking is due to the generous support of the Morn
ingside Center of the Academic Sinica and the help of many individuals. We are 
particularly grateful to Professors S. T. Yau and L. Yang for their interests in this 
program and their support; to Professor Z. J. Lu for his constant practical support 
and help; and to Professor A. Bressan, G. Chen, P. Degond, Â Perthame, and Y. 
Zheng for their lectures and contributions to this volume. We also wish to thank 
the junior participants in the program, Cheng He, Hailiang Li, R. H. Pan, Shao-
qiang Tang, K. Zhang, Ping Zhang, P. Zhu, etc, especially Hai Liang Li, who have 
made various contributions to the success of the program and this volume. 

Ling Hsiao and Zhouping Xin 
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Many basic phenomena in continuium mechanics and various other branches of 
natural sciences are governed by nonlinear conservation laws of the form [33, 87, 
178]: 

dxu + Vx • F(u) = EA(U), ueRn,x e Mm, (0.1) 

and its variants by taking into account other additional physical effects such as 
dispersion, relaxations, chemical reaction, and external sources, etc, besides the 
convection, compressions, and dissipation, where e > 0, A is some elliptic operator, 
and F(u) = (fi(u),-— , fm(u)) is a smooth nonlinear map. The convection is 
assumed to be hyperbolic in the sense that the n x n matrix £ • X7uF(u) has n real 
eigenvalues for all £ G Mm \ {0}. The most important examples of (0.1) may be the 
following Navier-Stokes equations and many of their variants [33,87,174]: 

dtp + div(pu) = 0 
dt(pu) + div(pu 0w) + Vp = div(T) (0.2) 
dt(pE) -f div(puE + up) = div(uT) + kAO 

which express the fundamental physical laws in continuium mechanics: conservation 
of mass, momentum, and energy, where x G Md, t G l 1 ; the unknown, p , « G fi&d,p, e 
and 0 denote the density, pressure, internal energy, and temperature respectively 

while E and T represent the total energy and stress tensor given by E = -\u\2 + e 

© 2000 American Mathematical Society 
and International Press 

X l l l 
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and T — /j,(Vu -f (V^)*) -f- p'{dxvu)I with \x and p! being the first and second 
coefficients of viscosity respectively, and 7 is the n x n identity matrix; k is the 

2 
coefficient of heat conduction. It is assumed that \i > 0, p! -\--p > 0, and k > 0. The 

a 
relation between p, p, 0, and e is given by the equation of state for the fluid concerned 
and the second law of thermodynamics. For ideal inviscid fluids, pi — p = k — 0, 
then (0.2) becomes the well-known compressible Euler equations: 

dtp + &\v(pu) = 0 
dt(pu) + div(pu <g> ix) + Vp = 0 (0.3) 
0*(p£) + div (puE + up) = 0 

which is one of the most important examples of systems of nonlinear hyperbolic 
conservation laws, which have been the main focus and the driving forces for mathe
matical theory of shock waves in the last centrary [33, 90, 178, 159]. Other examples 
of (0.1) include: the Euler and Navier-Stokes equations for incompressible fluids, 
the equations of elasticity, the equations of electro-magneto field dynamics for elec
trically conducting compression fluids, and equations for combustion, oil reservoir 
simulations, multiphase flows, etc. [87, 33, 178, 131, 129, 53, 135]. 

The most important feature of system (0.1) is that the speed of wave depends on 
the wave itself, which leads to great complexity and rich phenomena in the behavior 
of solutions to (0.1) [33, 178]. This can be revealed by understanding the dynamics 
and interactions of basic linear and nonlinear waves such as shock waves, rarefaction 
waves, solitons, diffusion waves, vortex sheets, and boundary layers, etc. [90, 129] 
The study on the properties of the solutions to (0.1) has important applications to 
many fields such as turbulence theory, geophysics, meteorology, material sciences, 
multi-phase flows, and chemical engineering, etc. This poses many problems which 
are both physically important and mathematically challenging. 

Substantial progress has been made in solving these nonlinear conservation 
laws both theoretically and numerically, and in understanding and interpreting 
the behaviors of solutions to these systems by the important analytical works [90, 
33, 50, 35, 40, 41, 55, 56, 97, 98, 102-104, 128, 141, 157, 159, 165-167, 13, 109, 
57, 60, 162, 66, 2-3, 73, 16, 38, 86, 129, 136, 195, 32, 17], and many powerful 
modern high resolutions-numerical methods for calculating discontinuous flows (or 
waves with large gradients) have been developed [31, 63, 39, 147, 148, 70-72, 6, 7, 
91, 93, 171]. This is particularly so in the one-space-dimension problems, and for 
suitably "small" solutions with some notable exceptions [4, 39, 98, 100, 85, 165 ]. 
Fundamental concepts such as basic linear and nonlinear waves, physical and Lax's 
geometrical entropy conditions, Riemann solutions, loss of regularity, dissipature 
mechanism of nonlinearity, compactness and irreversibility of the solution operator, 
etc, had been established for strictly hyperbolic systems (in one space dimension) 
almost three decades ago by the pioneering works in [50, 88-90, 159, 178]. A rather 
complete and satisfactory theory exists for scalar conservation laws in arbitrary 
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space dimensions in terms of well-posedness theory, regularity and compartness 
of solution operator, large time asymptotic behavior toward nonlinear waves and 
local structure of entropy weak solutions, and convergence of various approximate 
solutions generated by either physical perturbations (such as viscous, relaxational, 
and kinetic extensions, see the lectures by Chen, Perthame, and Xin in this volume 
and the references therein), or various numerical schemes [85, 93, 122,127, 142, 
165, 168, 175, 76]. All the methods working in this case rely essentially on the 
availability of the maximum principle in this case. Thus the corresponding theory 
for systems of nonlinear conservation laws is extremely difficult. For some special 
systems where a weak maximum principle exists, the existence of weak solution 
in the space of bounded measurable functions had been proved by the theory of 
compensated-compactness (see the lectures by Chen and Perthame in this volume 
for details, also [77, 78, 133, 134, 41, 26, 27]). However, though this elegant approach 
requires no restrictions on the sizes of the initial (or boundary) data, it does demand 
that there exist sufficiently many entropy-entropy flux pairs, whose existence is only 
quaranteed for 2 x 2 systems [88, 155]. Furthermore, relatively little information 
can be obtained for such weak solutions obtained by the weak convergence methods 
compared with the ones obtained by the Glimm's method described below. 

The most important breakthrough in the mathematical theory of shock waves 
is the celebrated random choice method pioneered by J. Glimm [55], which yields 
not only the existence of BV (bounded total variation) weak solutions for general 
1-D strictly hyperbolic systems of conservation laws with small BV data, but also 
precise asymptotic structures (both local and in large time) of such weak solutions 
[56, 36, 40, 104]. The Glimm theory is based on the fact that in one-space dimen
sion, dialation invariant solutions, (Riemann solutions), which are superpositions 
of elemantary waves: shock waves, rarefaction waves, and contact discontinuities, 
dominate the asymptotic behavior of general flows, both locally and for large time, 
and thus form building blocks for general weak solutions. The deep understanding 
on the propogation and interactions of elemantary waves provides the insight of the 
construction of the now well-known Glimm's functional which is decreasing in time 
on the Glimm's approximate solutions consisting of piecewise Riemann solutions, 
as a consequence of the fact that the possible increase of the total wave strength is 
always balanced out by the decrease of the total future wave interaction potential. 
[55, 159]. Similar ideas play crucial roles in the later major refinements and improv-
ments such as, the deterministic version of the Glimm scheme [103, 104], L°°-norm 
estimate of the Glimm method [195, 167], and L1-stability theory of the Glimm's 
solutions [12, 13, 109]. Tremendous progress has been achieved on the structure, 
regularity, and large time asymptotic behavior of the Glimms solutions [12, 42, 56, 
36, 104]. In particular, recently, Bressan successfully proved the uniqueness and 
L1 -continuous dependence in the class of the viscosity solutions by a semigroup ap
proach in a weighted space, this important recent development is discussed in detail 
in the lectures given by Bressan in this volume. More recently, the L1 -continuous 
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dependence of Glimm's solutions is shown by Liu and Yang by constructing a dif
ferent interesting functional [109]. 

However, it seems that Glimm's method is limited to strictly hyperbolic systems 
in one-space-dimension since BV space is not a suitable solution space for hyper
bolic system in more than one space dimensions [151]. Multi-dimensional theory for 
hyperbolic systems of conservation laws still has a long way to be developed with 
some notable exceptions: the short time structural stability of multi-dimensional 
gas dynamical shock fronts and rarefaction waves has been established [128, 131]; 
the theory of weakly nonlinear geometric optics has been systematically developed 
and applied to many interesting physical problems, such as reflection of shock wave 
by a wedge, and chemical reaction fluids, etc. (see [131, 68] and references therein); 
even rigorous justification of the asymptotic theory for resonant wave interactions 
has been achieved for some interesting cases [74, 131], the development of singu
larities in finite time from smooth data for Euler system (0,3) has been proved 
and the structure as shock wave has been verified in many important cases (such 
as irrotational flows) by the recent theory of geometrical blow-up for hyperbolic 
system in [2, 3, 156, 194]; and there have been many interesting studies on special 
multi-dimensional problems with various symmetries [26, 28, 59, 193]. 

In the last two decades or so, there have been interesting works by many people 
on the studies of non-strictly hyperbolic systems and equations that change types, 
which arise as models in Van der Waal gases, elastic-plastic materials, magneto-
hydro dynamics, multi-phase flows, and phase transitions [69, 82, 48, 107, 153, 
157]. New types of shock waves are needed to solve Riemann problems [69, 153, 107]. 
These new shock waves behave drastically different from the classical shock waves, 
and their admissibility and nonlinear stability have been investivgated recently for 
some prototype models [48, 49, 106, 112], where new wave phenomena have been 
found. Even in the cases that the Riemann problems can be solved successfully, 
it seems that the great complexity in the interactions of elementary waves makes 
it almost impossible to apply Glimm's approach in general except in the case of 
small perturbation of strong waves [153]. For certain 2 x 2 systems, the theory of 
compensated compactness has been applied to obtain the general weak solutions 
[27, 78, 141]. A new approach seems to be desired to treat general non-strictly 
hyperbolic systems. 

The inviscid Euler system (0.3) is expected to describe the large scale struc
tures of general viscous flows which are governed by the more physical Navier-Stokes 
Equations. The studies on the general Navier-Stokes equations have been the cen
ter of the continuum mechanics. Two major issues on compressible Navier-Stokes 
equations have been investigated extensively in the past decades. One is the global 
(in time) well-posedness of smooth solutions and the large time asymptotic behavior 
for multi-dimensional compressible Navier-Stokes system with fixed viscosity and 
heat conduction which is of hyperbolic-parabolic type. This has been succesfully 
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proved in the case for small smooth non-vacuum data whose long time behavior 
is shown to be governed by the linear diffusion waves [136, 159]. This theory has 
been generalized even for small discontinuous initial data in multi-dimensions in 
[64]. The other issue is to understand the effects of small scale dissipations on the 
behavior of large scale physical flows, i.e. to discribe the asymptotic relationship 
between the inviscid and viscous flows, in the presence of discontinuities and phys
ical boundaries for either small (but non-zero) dissipation or large time (with fixed 
dissipation). This is a very important issue not only for the understanding of the 
asymptotic behavior of the solutions to the Navier-Stokes system, but also crucial 
for the theory of inviscid hyperbolic systems, which is due to the fact that it is 
the dissipation mechanism which selects the correct weak solutions to the invis
cid system from other nonphysical solutions. Other considerations such as entropy 
production, entropy inequalities, or even the existence of visions shocks profile do 
not suffice, as examples in [48, 66] show. This is especially important for non-
strictly hyperbolic problems, problems in multi-dimensions and with boundaries. 
There has been a great success achieved in this direction in terms of nonlinear and 
linear waves in the past decade. Indeed, an almost complete theory on the non
linear large time asymptotic stability toward basic viscous waves (viscous shock 
profiles, rarefaction waves, viscous contact waves, and diffusion waves) has been 
developed for quite general systems of viscous, strictly hyperbolic conservation laws 
[57, 80, 105, 108, 110-111, 137, 162, 163, 183, 186-187, 198-199], and even for some 
pro-type non-strictly hyperbolic models with viscosity [29, 49, 106, 112]. Some of 
these results have been generalized to multi-dimension for scalear equations and 
some special systems [58, 185]. Furthermore, many new interesting methods, such 
as rigorous mulit-scale matched asymptotic method, weighted-characteristic energy 
method, and approximate paramatric method, etc., which build more hyperbolic 
elements into the conventional methods by taking into account more internal struc
ture of the underlying flows, have been developed, and should be very useful for 
other problems. The insights gained in the nonlinear stability theory can be crucial 
in the studies of a related long standing problem - zero dissipation problem, which 
is to show that the regular solutions to the visious system converge (in a suitable 
topology) to entropy weak solutions of the corresponding inviscid system as the dis
sipation goes to zero, and to understand the structures and dynamics of the viscous 
solutions across discontinuities and boundaries for small but non zero viscosity. The 
study of this problem has been the main driving force for both theoretical analysis 
and numerical methods for scalar conservation laws [85, 93, 159]. However, major 
difficulties occur for general systems due to the lack of compactness of the viscous 
solutions except for some special 2 x 2 systems where some weak maximum princi
ple is available so that the theory of the compensated compactness applies to show 
the convergence of viscous solutions to weak solutions to the coresponding inviscial 
systems, see the lectures by Chen and Perthame in this volume for details, also in 
[141]. In the past several years, a new approach, which is based on a multi-scale 
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matched asymptotic analysis and a-priori estimates motivated by the theory of non
linear stability of viscous waves, has been developed to treat specific but physically 
interesting flows for general systems [60, 65, 181, 188, 190]. In particular, it is 
shown in [60] that piecewise smooth solutions with entropy-satisfying shock discon
tinuities to general strictly hyperbolic systems can be realized as limits of viscous 
solutions as viscosities tend to zero, and detailed local structures of the viscous 
solutions have been obtained, see also [196] for recent improvement. For more ideas 
on this approach, we refer the reader to the lectures by Xin in this volume. This 
approach has been applied to treat other singular perturbation problems [168]. The 
zero dissipation limit problem becomes more singular in the presence of physical 
boundaries due to the appearance of boundary layers. There have been extensive 
studies on the boundary layer theory due to its importance in the applications to 
high speed flows [154]. Most engineering literature deals with the formal asymptotic 
analysis of boundary layers for steady flows with some specific flow configurations 
[154, 47, 147]. In the case where the boundaries are uniformly non-characteristic, 
the multi-scale structure of the viscous solutions can be revealed by matched as
ymptotic analysis and the strong convergence of the viscous solutions to the inviscid 
flow away from the boundaries can be obtained by nonlinear stability analysis of the 
boundary layer before shock formation provided that the boundary layer is suitably 
weak [52, 62, 75, 5, 139, 181]. For the well-known non-slip boundary conditions for 
the Navier-Stokes equations, which is uniformly characteristic, the formal prandtl's 
boundary layer theory has existed since the early of this century, yet its validity 
has been proved rigorously for linearied flows in general Sobolev space in [182] and 
for nonlinear flows only in the analytical setting [152]. The study on the Prandtls 
boundary layer equations, which is a degenerate parabolic-elliptic system, is quite 
difficult in general Sobolev spaces. Only some partial results, such as finite time 
blow-up, long time existence of solutions for special class of monotonic initial data, 
and steady flows, exist [46, 47, 146]. 

Another major recent development in the theory of the compressible Navier-
Stokes system is the global (in time) existence of large amplitude weak solutions 
to either the Cauchy problems or initial boundary value problems of the isentropic 
compressible Navier-Stokes equations with some special equations of state [98]. Al
though the uniqueness and regularities of such weak solutions remain open, some 
important physical properties, such as boundedness of the energy and the zero-mach 
number limit to the solutions of the incompressible Navier-Stokes equations, have 
been established for these weak solutions [98, 99]. The approach of this theory is 
a weak convergence method based on the standard energy estimate and an addi
tional space-time higher estimate which is guaranteed by the special form of the 
equation of state [98]. It is remarkable that such a approach can work thus far since 
almost all the a -prior estimates required for this theory are well known. It should 
be noted that in the case where the initial data is not periodic, the existence of 
weak solutions [98] requires that the far fields must be vacuum, and thus the weak 
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solutions cannot be regular in general even for smooth initial data due to the fact 
that any non-trival smooth solution with compartly supported initial density must 
blow-up in finite time [180]. This somewhat surprising fact is a direct consequence 
of the observation that the pressure behaves dispersively for both Euler and Navier-
Stokes systems in arbitrary space dimensions if the far fields are at vacuum [180, 
132]. This instance shows the importance of understanding vacuum state in the 
theory of the compressible fluids besides the physical relevance, such as evolution 
of gaseous stars due to the high order degeneracy of both Euler and Navier-Stokes 
systems at vacuum. Some rich phenomena have been revealed in recent studies 
involving vacuum state, which include the dispersive behavior of the total pressure 
[180], the singular motions of the free surfaces separating the gases from vacuum, 
and the better regularity of the inviscid flows than the viscous ones, etc [113, 127]. 

The compressible Euler or Navier-Stokes systems either give macroscopic de
scriptions of interacting particles in a fluid motions as the mean free path tends 
to zero in the kinetic theory [21] or govern the equilibrium states of thermo-non-
equilibrium process as the rate of relaxation goes to zero [22]. There have been 
increasing interests in studing the hydrodynamic limits for various kinetic models 
and the zero-relaxation limits for many thermo-non-equilibrium processes in the 
recent years [4, 18-21, 25, 61, 70-72, 81, 94, 101-102, 116-117, 123-124, 127, 133-
134, 142-143, 145, 158-149, 157, 174, 176-177, 184, 188-189, 192, 199]. Besides the 
obvious physical significance of such limits problems, one would also hope that the 
complexities and many great difficulties such as loss of regularity, non-uniqueness 
of weak solutions, global entropy condition, and considerable difficulties in numer
ical calculations, encounted at the macroscopic level, can be illuminated and over
come by looking into the microscopic discriptions of the fluid motions which are 
not only physically sound but also mathematically tractable. Despite the substan
tial progress such as Chapman-Enskog theory [61, 21], initial layer theory [20, 18], 
and existence of shock profiles [19], etc have been achieved for the hydro-dynamic 
limit problems for various models of the nonlinear Boltzmann type equations, the 
global nonlinarity of the interaction operators for Boltzmann type transport equa
tions and the stiffness of the hydro-dynamic limit make it extremely difficult (if 
not impossible) to study the limit rigorously and to gain deep insight about the 
macroscopic flows, in particular, in the presence of discontinuities and physical 
boundaries [19, 21, 116-117, 174, 176, 184, 192] One of recent efforts has been con
centrated on designing better (in the sense that they are physically reasonable and 
amiable to mathematical analysis both analytically and numerically) kinetic models 
or relaxation approximations for a given system of a hyperbolic conservation laws 
[11, 70-72, 79, 101, 143, 148-149, 192]. One such approach is the so called kinetic 
formulation of conservation laws, which artificially construct a collision operator 
in a similar spirit as that for the BGK model of Boltzmann equation [21] so that 
the Maxwellian satisfies the given conservation laws [149, 101]. This approach was 
successfully applied to multi-dimension scalar conservation laws and some special 
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systems, for more detailed discussions on this approach, we refer the reader to the 
lectures by B. Perthame in this volume and the references therein. Another ap
proach is the local relaxations approximation methods introduced recently by Jin 
and Xin [70]. The basic idea is that for any given general system of nonlinear 
conservation laws, one can construct a corresponding linear hyperbolic system with 
a nonlinear stiff source term that approximates the original system of conserva
tion laws with a small dissipative correction under the so-called "subcharacteristic 
condition" which ensures the relaxation system contains all the information of the 
original system. The special structure of the relaxation system proposed in [70], 
such as linear characteristic fields with constant waves speeds; localized nonlinear 
interaction with relaxational structure; and the stiff source terms being not-fully 
ranked and linear in the induced variables which approximate the fluxes of the orig
inal conservation laws, makes it more advantagerous to solve the relaxation system 
numerically than the original system of conservation laws. Indeed, the resulting re
laxation schemes are high order accurate, entropy preserving, and requiring neither 
the Riemann solvers nor nonlinear algebraic solvers [70]. The main features of the 
relaxation schemes in [70-72] are their simplicity and generality. General systems 
of higher space dimensions can be treated in the same way as in the one dimension. 
Furthermore, there is no requirement of hyperbolicity in the formulation, thus the 
relaxation schemes should be useful in many problems such as in MHD, multiple 
phase flows, and elastic-plastic materials, etc., in which Riemann solvers (or ever 
approximate Riemam solvers) are not easily available. Various extensions of the 
local relaxation idea exist [71, 72, 79, 143], and rigorous analysis of the asymptotic 
equivalence between and relaxation system and the limiting system of conservation 
laws has been obtained in many interesting cases [123-124, 127, 142, 168, 176, 192]. 

On the other hand, in many pratical applications, the macroscopic models, are 
considerably simpler both conceptually and numerically than their macroscopic ki
netic models [21, 22, 135, 174], and multi-scale expansion methods, such as Hilbert 
and Chapman-Enskog expansions are very powerful to derive useful macroscopic 
models from the more fundamental kinetic descriptions. One particular case is the 
mathematical modelling of electron transport in semi-conductor materials [135]. A 
semiconductor is a solid-state material with an intrinsically low electron conductiv
ity. On the quantum level, the state of a free electron is governed by the Schrodinger 
equation. In the semi-classical limit, the kinetic description of the electron and hole 
population in a semiconductor device is given by the nonlinear Boltzmann equa
tions governing the distribution functions with the electrostatic potential satisfying 
a Poission equation. However, such a detailed description for carrier transport in 
semiconductors is too complicated for pratical purposes, and many numerical codes 
based on Monte-Carlo or particle methods, are very expensive and cannot be rou
tinely used to design components. Various macroscopic models have been sought. 
The mostly widely used model in practice is the so called drift-diffusion model, which 
is a parabolic equation for electron density and has been extensively studied both 
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mathematically and numerically since early fifties [51, 125, 133, 135]. The improve
ment of the drift-diffusion model is the Energy-Transport model, which consists of a 
parabolic system for the electron density and energy, and has been derived from the 
Boltzmann equation by multiscale analysis only recently [8]. The Energy-Transport 
model, which includes the drift-diffusion model as a particular case, resembles in 
many ways the compressible Navier-Stokes equations and has been studies exten
sively recently [8, 37]. These topics and other models are discussed in great detail 
in the lectures by P. Degond in this volume. 

In the limit of small Mach number, one can derive from the compressible Euler 
and Navier-Stokes systems the incompressible Euler and Navier-Stokes equations 
respectively [83, 99], which govern various flows such as water in the oceans and 
air in the atmosphere. The mathematical theory for the incompressible fluid is 
more mature than that for the compressible one (see [32, 86, 97, 129, 179]). In 
particular, the well-posedness theory for smooth solutions exists in 2-D for both 
Euler and Navier-Stokes systems thanks to the fact that the vorticity of the flow 
satisfies a maximum principle [97, 129]. There have been some signficant results 
concerning physically important inviscid 2-D singular flows: the motions of vortex 
patch and vortex sheets [129, 160, 140, 84, 150, 164, 17, 119-120]. For the vortex 
patch problem, here the vorticity is bounded, the well-posedness is proved long age 
[197], even the preservation of the regularity of the boundary of the vortex patch 
has been achieved recently [23, 10]. While the progress has been much slow and 
limited for the vortex sheets problem, where the vorticity is a finite Radom measure 
concentrated on a curve which is smooth initially, the global (in time) existence of 
classical weak solutions, and convergence of approximate solutions generated by 
either viscous regularization or vortex method have been achieved only recently for 
the case that the initial vorticity has single sign [38, 44, 115, 118, 130] except for 
special flows [121], though the short time existence in the analytic setting have been 
extensively studied [17, 129, 140]. Many important questions such as uniqueness of 
weak solutions, structure of the vortex sheet after roll-up, and behavior of approxi
mate solutions remain open. For more discussion on this and related problems, we 
refer to the lectures by Y. Zheng in this volume. Much less progress has been made 
for 3-D incompressible flows, although the Leray-Hopf weak solutinos to the 3-D 
Navier-Stokes equation have been shown to exist globally in time for quite general 
data and exterior forces [32, 86], the partial regularity and large time behavior of 
the Leray-Hopf weak solutions have been obtained [16, 95, 96, 169, 170], and the 
existence of large amplitude strong solutions under certain symmetries has been 
established [173, 86]. Yet, most central questions in the incompressible fluid me
chanics, such as whether finite time singularities do develop from smooth initial 
data for both inviscid and viscous flows, the uniqueness and regularity of Leray-
Hopf weak solutions with large amplitudes, long time dynamics of viscous flows, 
and instability of visious boundary layers, etc., remain completely open and chal
lenge the field for many years to come, though some special types of blow-up for 



xxii ZHOUPING XIN 

Navier-Stokes, such as self similar blow-up, has been ruled out recently [144, 170, 
172]. Even the existence of weak solution to the inviscid Euler equations has not 
been proved except the cases with special symmetries [129, 173], and the existence 
of measure-valued solutions [45]. 

Another most significant achievement in the past several decades is the devel
opment of many powerful modern high resolution numerical methods for calculating 
large scale flows governed by (0.1) [29, 31, 63, 147, 93, 70, 6, 7, 120, 84]. This is an 
important but difficult task due to the possible appearance of transitional layers, 
(such as shock layers, boundary layers, and shear layers etc.) in the flows gov
erned by (0.1). Rich phenomena such as smearing, post-shock oscillations, discrete 
shock profile, and numerical cell-entropy conditions, etc, have been found. For in-
viscid flows, the finite difference schemes can be classified into either front-tracking 
method, or shock-capturing method, and hybridizations of these two [30, 63, 91, 
171]. The convergence of many pratical scheme has been proved for scalar equations 
and some special systems, see [93] and the references therein. However, since most 
of the lectures in this volume deal mainly with theoretical issues, I will omit the 
detailed discussions on this important topic. 

Despite the important progress achieved in the past on the study of (0.1) and 
related equations, many fundamental questions remain to be answered and continue 
to challenge the field for many years to come. Since I have discussed some open 
problems for (0.1) in great detail in [191], I will sketch some general problems here, 
and refer the readers to [191] for more discussion on the motivation, related work, 
and significance of these problems. 

1. Well-posedness and local structure of BV weak solutions for 1-D strictly 
hyperbolic systems (in particular, for the full gas dynamic system) with Cauchy 
data of arbitrary amplitude. Is the solution unique? Can a weak solution to the 
full gas dynamics equations in BV space blow-up in finite time [138]? Can a BV 
solution behave locally as an appropriate peturbation of a Riemann solution as 
Glimm's solutions do [103]? 

2. Local structure and uniqueness of limits of zero dissipation. If a weak 
solution to the 1-D inviscid strictly hyperbolic system is a limit of solutions to the 
corresponding viscous system as the viscosity tends to zero, then what is the local 
structure of such a solution? can it be a viscosity solution defined by Bressan in 
[12, 13]? Can one show that such a solution is unique in the class of weak solutions 
obtained as limits of zero dissipation? 

3. Spatial periodic solutions and homogenization theory for general 1-D strictly 
hyperbolic systems. For a given strictly hyperbolic systems without a Riemann 
invariant coordinates (the 3 x 3 full gas dynamical system in particular), when do 
shocks form from a smooth spatial periodic flow [90, 92]? Is there a global weak 
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solution with periodic initial data? How do the oscillations propogate for such 
system [56]? 

4. Theory of well-posedness of weak solutions to general nonstrictly hyperbolic 
systems [27, 48, 69, 78, 82]. 

5. Multi-dimension inviscid shock wave theory. Due to the complexity and 
lack of understanding, one should concentrate on the multi-dimension compressible 
Euler system. Despite the recent progress in geometrical blow-up theory [1, 2, 3, 
156, 194], the singularity structure of solutions to Euler system has not be found 
unless the flow is assumed to be irrotational [2, 194]. In general, do shocks form 
before shell singularities? Can one study some of the special physically relevant wave 
patterns where a lot of experimental data, numerical simulations, and asymptotic 
results are available, such as: shock reflection phenomena [9, 54, transonic flows 
and standing shocks in a nozzle [59], self-similar flows, and other flows with various 
symmetries [28, 33, 193, 200]. 

6. Global (in time) well-posedness of the Cauchy problem or initial-boundary 
value problem for the compressible Navier-Stokes equation with large data in multi-
dimension. Can smooth solution develop finite time sigularity [180]? Can the 
vacuum state be formed in finite for non-vacuum date? Can one obtain regularity 
for the weak solution constructed by P. L. Lions [98, 180]? 

7. Nonlinear stability of planary viscous nonlinear waves for viscous systems is 
multi-dimension (in particular, for 2D or 3D compressible Navier-Stokes equations). 
When are basic nonlinear wave patterns: such as planar viscous shock profiles 
and viscous rarefaction waves, nonlinearly stable under generic multi-dimensional 
perturbations? What are the large time asymptotic behavior toward a contact wave 
for solutions to the compressible Navier-Stokes equations? 

8.Shock and boundary layer theory for the compressible Navier-Stokes equa
tions. Can one prove the asymptotic equivalence of the Euler and Navier-Stokes 
systems in the limit of small viscosity and heat conduction in the case that the 
inviscid flow contains finitely many shock discontinuities [60]? Can one justify the 
Prandtl's boundary layer theory [182, 154]? 

9. 2-D vortex sheets motion. What are the structures of the approximate 
solutions generated by either Navier-Stokes solutions or vortex methods with gen
eral vortex sheets initial data [38, 130, 115, 118]? Doses concentration-cancellation 
always occur [44]? Does there exist dynamical energy-concentration for such ap
proximate solutions with initial vorticity either one sign or both signs [44]? In 
the case of bounded domain, can vorticity concentrate near the physical boundary 
[121]? 
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10. Fluid-dynamic limits. Study the fluid-dynamic limit problems for general 
models of the nonlinear Boltzmann equations in the presence of discontinuities and 
physical boundaries [116-117, 158, 177, 184, 188-189]. What will be the fluid-
dynmamic limit for the renormalized weak solutions to the Boltzmann equation 
obtained by Diperna-Lions in [43]? 
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