
American Mathematical Society  •  International Press

Studies in
Advanced
Mathematics
S.-T. Yau, Series Editor

AMS/IP

M. Ram Murty

Introduction 
to p-adic Analytic 
Number Theory



Introduction
to p-adic Analytic
Number Theory





Introduction
to p-adic Analytic
Number Theory

M. Ram Murty 

Studies in
Advanced
Mathematics

AMS/IP

Volume 27

American Mathematical Society •    International Press

https://doi.org/10.1090/amsip/027



Shing-Tung Yau, General Editor

2000 Mathematics Subject Classification. Primary 11–01, 11–02, 11E95, 11Sxx.

The quote on page v from Swami Vivekananda is reprinted with permission, from the
Complete Works of Swami Vivekananda, Vol. 2, p. 227, Advaita Ashrama 5, Dehi Entally
Road, Kolkatta 700 014, India. c© Advaita Ashrama.

Library of Congress Cataloging-in-Publication Data

Murty, Maruti Ram.
Introduction to p-adic number theory / M. Ram Murty.

p. cm. — (AMS/IP studies in advanced mathematics, ISSN 1089-3288 ; v. 27)
Includes bibliographical references and index.
ISBN 0-8218-3262-X (alk. paper)
1. Number theory. 2. p-adic analysis. I. Title. II. Series.

QA241M85 2002
512′.74—dc21 2002025584

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

c© 2002 by the American Mathematical Society and International Press. All rights reserved.
The American Mathematical Society and International Press retain all rights

except those granted to the United States Government.
Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at URL: http://www.ams.org/
Visit the International Press home page at URL: http://www.intlpress.com/

10 9 8 7 6 5 4 3 2 1 14 13 12 11 10 09

AMS softcover ISBN 978-0-8218-4774-9



One life runs through all like a continuous chain,
of which all these various forms represent the links,
link after link, extending almost infinitely,
but of the same one chain.

Vivekananda
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Preface

Following Hensel’s discovery in 1897 of the p-adic numbers, Ostrowski’s theo-

rem of 1918 classifying all the possible norms that one can define on the rational

numbers has been the starting point of what is now called the adelic perspec-

tive. Loosely speaking, this means that the rational numbers should not be

thought of as merely a subset of the real numbers but rather as a subset of a

spectrum of topological fields obtained by completing the rational number field

with respect to each of the possible norms. This adelic perspective has been

a unifying theme in number theory ever since its conception in the 20th cen-

tury. From this vantage point, all completions of the rationals must be treated

“equally.” It would seem then that what is traditionally called analytic num-

ber theory looks at only one completion, and ignores the non-archimedean (or

p-adic) completions. In the latter half of the 20th century, this restricted view-

point was enlarged through the foundational work of Kubota and Leopoldt and

later by Iwasawa who established much of the groundwork of a p-adic analytic

number theory. Thus, the search for p-adic incarnations of the classical zeta

and L-functions is of relatively recent origin and has been a useful motif in the

study of special values of various L-functions and their arithmetic significance.

This perspective has also been a fertile program of research, largely inspired by

the method of analogy with the archimedean context. As such, it is an exciting

program to discover to what extent p-adic analogues of classical theorems and

in some cases, the classical methods, exist.

This monograph is a modest introduction to the p-adic universe. Its aim is to

acquaint the non-expert to the basic ideas of the theory and to invite the novice

to engage in a fecund field of research. It grew out of a course given to senior

undergraduates and graduate students at Queen’s University during the fall

semester of 2000-2001. That course was based on notes of a shorter course given

at the Harish-Chandra Research Institute on p-adic analytic number theory from

December 22, 1999 till January 12, 2000.

The prerequisites have been kept to a minimum. My goal is to introduce the

novice student to a beautiful chapter in number theory. A background in basic

algebra, analysis, elementary number theory and at least one course in complex

analysis should suffice to understand the first nine chapters. The last chapter

requires a little bit more background and is intended to give some inspiration for

studying the subject at a deeper level. There are more than a hundred exercises

in the book and their level varies. Most of them are routine and the students

in the course were able to keep pace by doing them.

ix
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Yu-Ru Liu, Kumar Murty, D.S. Nagaraj, and Lawrence Washington for their

careful and critical reading of preliminary versions of these lecture notes. I also

thank the students and post-doctoral fellows at Queen’s who participated in the

seminar and course out of which the monograph was born.

M. Ram Murty

Kingston, Ontario, Canada

January 2002



Bibliography

[Ap] T. Apostol, Introduction to Analytic Number Theory, Undergraduate

Texts in Mathematics, Springer-Verlag, 1976.

[Bo] R. Bojanic, A simple proof of Mahler’s theorem on approximation of con-

tinuous functios of a p-adic variable by polynomials, J. Number Theory,
6 (1974)pp. 412-415.

[C] J. Cassels, Local Fields, London Mathematical Society Student Texts, 3,

Cambridge University Press., 1986.

[Cl] W. E. Clark, The Aryabhatiya of Aryabhata, University of Chicago

Press, Chicago, Illinois, 1930.

[Co] R. Coleman, On the Galois groups of the exponential Taylor polynomials,

Enseign. Math., 33(2) (1987), no. 3-4, 183-189.

[EM] J. Esmonde and M. Ram Murty, Problems in Algebraic Number Theory,

GTM, Vol. 190, Springer-Verlag, 1999.

[FW] B. Ferrero and L. Washington, The Iwasawa invariant μp vanishes for

abelian number fields, Annals of Math., 109 (1979) pp. 377-395.
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This book is an elementary introduction to p-adic analysis from the 
number theory perspective. With over 100 exercises included, it will 
acquaint the non-expert to the basic ideas of the theory and encourage  
the novice to enter this fertile field of research.

The main focus of the book is the study of p-adic L-functions and their  
analytic properties. It begins with a basic introduction to Bernoulli num-
bers and continues with establishing the Kummer congruences. These 
congruences are then used to construct the p-adic analog of the Riemann 
zeta function and p-adic analogs of Dirichlet's L-functions. Featured is 
a chapter on how to apply the theory of Newton polygons to determine 
Galois groups of polynomials over the rational number field. As motiva-
tion for further study, the final chapter introduces Iwasawa theory. 
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